[1] |
Zhou, L., Wang, X., Wu, Q., Ni, Z., Zhou, K., Wen, C., et al. (2024) Carbon Nanotube Sponge Encapsulated Ag-Mwcnts/PW Composite Phase Change Materials with Enhanced Thermal Conductivity, High Solar-/Electric-Thermal Energy Conversion and Storage. Journal of Energy Storage, 84, Article 110925. https://doi.org/10.1016/j.est.2024.110925 |
[2] |
Medhaug, I., Stolpe, M.B., Fischer, E.M. and Knutti, R. (2017) Reconciling Controversies about the ‘Global Warming Hiatus’. Nature, 545, 41-47. https://doi.org/10.1038/nature22315 |
[3] |
Xiao, Q., Yuan, W., Li, L. and Xu, T. (2018) Fabrication and Characteristics of Composite Phase Change Material Based on Ba(OH)2·8H2O for Thermal Energy Storage. Solar Energy Materials and Solar Cells, 179, 339-345. https://doi.org/10.1016/j.solmat.2017.12.032 |
[4] |
Gao, H., Wang, J., Chen, X., Wang, G., Huang, X., Li, A., et al. (2018) Nanoconfinement Effects on Thermal Properties of Nanoporous Shape-Stabilized Composite PCMs: A Review. Nano Energy, 53, 769-797. https://doi.org/10.1016/j.nanoen.2018.09.007 |
[5] |
Huang, X., Chen, X., Li, A., Atinafu, D., Gao, H., Dong, W., et al. (2019) Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage Applications. Chemical Engineering Journal, 356, 641-661. https://doi.org/10.1016/j.cej.2018.09.013 |
[6] |
Agyenim, F., Hewitt, N., Eames, P. and Smyth, M. (2010) A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS). Renewable and Sustainable Energy Reviews, 14, 615-628. https://doi.org/10.1016/j.rser.2009.10.015 |
[7] |
Jourabian, M., Farhadi, M., Sedighi, K., Darzi, A.R. and Vazifeshenas, Y. (2011) Simulation of Natural Convection Melting in a Cavity with Fin Using Lattice Boltzmann Method. International Journal for Numerical Methods in Fluids, 70, 313-325. https://doi.org/10.1002/fld.2691 |
[8] |
Dhaidan, N.S. and Khodadadi, J.M. (2017) Improved Performance of Latent Heat Energy Storage Systems Utilizing High Thermal Conductivity Fins: A Review. Journal of Renewable and Sustainable Energy, 9, Article 034103. https://doi.org/10.1063/1.4989738 |
[9] |
Sharma, D.K., Agarwal, P. and Prabhakar, A. (2023) Effect of Fin Design and Continuous Cycling on Thermal Performance of PCM-HP Hybrid BTMS for High Ambient Temperature Applications. Journal of Energy Storage, 74, Article 109360. https://doi.org/10.1016/j.est.2023.109360 |
[10] |
Wang, J., Shen, M., Liu, Z. and Wang, W. (2022) MXene Materials for Advanced Thermal Management and Thermal Energy Utilization. Nano Energy, 97, Article 107177. https://doi.org/10.1016/j.nanoen.2022.107177 |
[11] |
Guo, Z., Lin, F., Qiao, J., Liu, X., Liu, M., Huang, Z., et al. (2023) A Modified Kapok Fiber Based Phase Change Composite for Highly-Efficient Solar-Thermal Conversion. Nano Energy, 108, Article 108205. https://doi.org/10.1016/j.nanoen.2023.108205 |
[12] |
Xu, J., Li, Y., Liu, T., Wang, D., Sun, F., Hu, P., et al. (2023) Room-Temperature Self-Healing Soft Composite Network with Unprecedented Crack Propagation Resistance Enabled by a Supramolecular Assembled Lamellar Structure. Advanced Materials, 35, Article 2300937. https://doi.org/10.1002/adma.202300937 |
[13] |
Wu, S., Li, T., Tong, Z., Chao, J., Zhai, T., Xu, J., et al. (2019) High-Performance Thermally Conductive Phase Change Composites by Large-Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting. Advanced Materials, 31, Article 1905099. https://doi.org/10.1002/adma.201905099 |
[14] |
Liu, Y., Zou, W., Zhao, N. and Xu, J. (2023) Electrically Insulating PBO/MXene Film with Superior Thermal Conductivity, Mechanical Properties, Thermal Stability, and Flame Retardancy. Nature Communications, 14, Article No. 5342. https://doi.org/10.1038/s41467-023-40707-x |
[15] |
Dhaidan, N.S. and Khodadadi, J.M. (2015) Melting and Convection of Phase Change Materials in Different Shape Containers: A Review. Renewable and Sustainable Energy Reviews, 43, 449-477. https://doi.org/10.1016/j.rser.2014.11.017 |
[16] |
Hekmat, M.H., Haghani, M.H.K., Izadpanah, E. and Sadeghi, H. (2022) The Influence of Energy Storage Container Geometry on the Melting and Solidification of PCM. International Communications in Heat and Mass Transfer, 137, Article 106237. https://doi.org/10.1016/j.icheatmasstransfer.2022.106237 |
[17] |
Dhaidan, N., Hashim, H., Abbas, A., Khodadadi, J., Almosawy, W. and Al-Mousawi, F. (2023) Discharging of PCM in Various Shapes of Thermal Energy Storage Systems: A Review. Journal of Thermal Science, 32, 1124-1154. https://doi.org/10.1007/s11630-023-1793-z |
[18] |
Punniakodi, B.M.S. and Senthil, R. (2021) A Review on Container Geometry and Orientations of Phase Change Materials for Solar Thermal Systems. Journal of Energy Storage, 36, Article 102452. https://doi.org/10.1016/j.est.2021.102452 |
[19] |
Thonon, M., Fraisse, G., Zalewski, L. and Pailha, M. (2024) Simultaneous Charging and Discharging Processes in Latent Heat Thermal Energy Storage: A Review. Thermal Science and Engineering Progress, 47, Article 102299. https://doi.org/10.1016/j.tsep.2023.102299 |
[20] |
Dhaidan, N.S. (2017) Melting Phase Change of N-Eicosane Inside Triangular Cavity of Two Orientations. Journal of Renewable and Sustainable Energy, 9, Article 054101. https://doi.org/10.1063/1.5007894 |
[21] |
Chatterjee, S., Bhanja, D. and Nath, S. (2023) Numerical Investigation of Heat Transfer and Melting Process of Phase Change Material in Trapezoidal Cavities with Different Shapes and Different Heated Tube Positions. Journal of Energy Storage, 72, Article 108285. https://doi.org/10.1016/j.est.2023.108285 |
[22] |
Dhaidan, N.S. (2020) Thermal Performance of Constrained Melting of PCM Inside an Elliptical Capsule of Two Orientations. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 45, 515-521. https://doi.org/10.1007/s40997-020-00345-w |
[23] |
Tian, M., Smaisim, G.F., Yan, S., Sajadi, S.M., Mahmoud, M.Z., Aybar, H.S., et al. (2022) Retracted: Economic Cost and Efficiency Analysis of a Lithium-Ion Battery Pack with the Circular and Elliptical Cavities Filled with Phase Change Materials. Journal of Energy Storage, 52, Article 104794. https://doi.org/10.1016/j.est.2022.104794 |
[24] |
Dhaidan, N.S. and Khalaf, A.F. (2020) Experimental Evaluation of the Melting Behaviours of Paraffin within a Hemicylindrical Storage Cell. International Communications in Heat and Mass Transfer, 111, Article 104476. https://doi.org/10.1016/j.icheatmasstransfer.2020.104476 |
[25] |
El Hadi Attia, M., Zayed, M.E., Kabeel, A.E., Abdullah, A.S. and Abdelgaied, M. (2023) Energy, Exergy, and Economic Analyses of a Modified Hemispherical Solar Distiller Augmented with Convex Absorber Basin, Wicks, and PCM. Solar Energy, 261, 43-54. https://doi.org/10.1016/j.solener.2023.05.057 |
[26] |
Dhaidan, N.S., Khalaf, A.F. and Khodadadi, J.M. (2021) Numerical and Experimental Investigation of Melting of Paraffin in a Hemicylindrical Capsule. Journal of Thermal Science and Engineering Applications, 13, Article 051008. https://doi.org/10.1115/1.4049873 |
[27] |
Adine, H.A. and El Qarnia, H. (2009) Numerical Analysis of the Thermal Behaviour of a Shell-and-Tube Heat Storage Unit Using Phase Change Materials. Applied Mathematical Modelling, 33, 2132-2144. https://doi.org/10.1016/j.apm.2008.05.016 |
[28] |
Mostafavi, A. and Jain, A. (2022) Thermal Management Effectiveness and Efficiency of a Fin Surrounded by a Phase Change Material (PCM). International Journal of Heat and Mass Transfer, 191, Article 122630. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122630 |
[29] |
Shank, K. and Tiari, S. (2023) A Review on Active Heat Transfer Enhancement Techniques within Latent Heat Thermal Energy Storage Systems. Energies, 16, Article 4165. https://doi.org/10.3390/en16104165 |
[30] |
Tiari, S., Hockins, A. and Shank, K. (2022) Experimental Study of a Latent Heat Thermal Energy Storage System Assisted by Varying Annular Fins. Journal of Energy Storage, 55, Article 105603. https://doi.org/10.1016/j.est.2022.105603 |
[31] |
Shank, K., Bernat, J., Regal, E., Leise, J., Ji, X. and Tiari, S. (2022) Experimental Study of Varying Heat Transfer Fluid Parameters within a Latent Heat Thermal Energy Storage System Enhanced by Fins. Sustainability, 14, Article 8920. https://doi.org/10.3390/su14148920 |
[32] |
Kalapala, L. and Devanuri, J.K. (2018) Influence of Operational and Design Parameters on the Performance of a PCM Based Heat Exchanger for Thermal Energy Storage—A Review. Journal of Energy Storage, 20, 497-519. https://doi.org/10.1016/j.est.2018.10.024 |
[33] |
Sanchouli, M., Payan, S., Payan, A. and Nada, S.A. (2022) Investigation of the Enhancing Thermal Performance of Phase Change Material in a Double-Tube Heat Exchanger Using Grid Annular Fins. Case Studies in Thermal Engineering, 34, Article 101986. https://doi.org/10.1016/j.csite.2022.101986 |
[34] |
Tiari, S. and Hockins, A. (2021) An Experimental Study on the Effect of Annular and Radial Fins on Thermal Performance of a Latent Heat Thermal Energy Storage Unit. Journal of Energy Storage, 44, Article 103541. https://doi.org/10.1016/j.est.2021.103541 |
[35] |
Liu, Y.K. and Tao, Y.B. (2022) Experimental and Numerical Investigation of Longitudinal and Annular Finned Latent Heat Thermal Energy Storage Unit. Solar Energy, 243, 410-420. https://doi.org/10.1016/j.solener.2022.08.023 |
[36] |
Dhaidan, N.S., Hassan, A.F., Rasheed Al-Gaheeshi, A.M., Al-Mousawi, F.N. and Homod, R.Z. (2023) Experimental Investigation of Thermal Characteristics of Phase Change Material in Finned Heat Exchangers. Journal of Energy Storage, 71, Article 108162. https://doi.org/10.1016/j.est.2023.108162 |
[37] |
Agyenim, F. (2016) The Use of Enhanced Heat Transfer Phase Change Materials (PCM) to Improve the Coefficient of Performance (COP) of Solar Powered LiBr/H2O Absorption Cooling Systems. Renewable Energy, 87, 229-239. https://doi.org/10.1016/j.renene.2015.10.012 |
[38] |
Sciacovelli, A., Gagliardi, F. and Verda, V. (2015) Maximization of Performance of a PCM Latent Heat Storage System with Innovative Fins. Applied Energy, 137, 707-715. https://doi.org/10.1016/j.apenergy.2014.07.015 |
[39] |
Al-Mudhafar, A.H.N., Nowakowski, A.F. and Nicolleau, F.C.G.A. (2021) Enhancing the Thermal Performance of PCM in a Shell and Tube Latent Heat Energy Storage System by Utilizing Innovative Fins. Energy Reports, 7, 120-126. https://doi.org/10.1016/j.egyr.2021.02.034 |
[40] |
Xu, Y., Wang, J. and Li, T. (2022) Experimental Study on the Heat Transfer Performance of a Phase Change Material Based Pin-Fin Heat Sink for Heat Dissipation in Airborne Equipment under Hypergravity. Journal of Energy Storage, 52, Article 104742. https://doi.org/10.1016/j.est.2022.104742 |
[41] |
Jaworski, M. (2012) Thermal Performance of Heat Spreader for Electronics Cooling with Incorporated Phase Change Material. Applied Thermal Engineering, 35, 212-219. https://doi.org/10.1016/j.applthermaleng.2011.10.036 |
[42] |
Kateshia, J. and Lakhera, V.J. (2021) Analysis of Solar Still Integrated with Phase Change Material and Pin Fins as Absorbing Material. Journal of Energy Storage, 35, Article 102292. https://doi.org/10.1016/j.est.2021.102292 |
[43] |
Sharma, A., Kothari, R. and Sahu, S.K. (2022) Effect of Fin Location on Constrained Melting Heat Transfer of Phase Change Material in a Spherical Capsule: A Numerical Study. Journal of Energy Storage, 52, Article 104922. https://doi.org/10.1016/j.est.2022.104922 |
[44] |
Wu, J., Chen, Q., Zhang, Y. and Sun, K. (2021) Phase Change Material Heat Transfer Enhancement in Latent Heat Thermal Energy Storage Unit with Single Fin: Comprehensive Effect of Position and Length. Journal of Energy Storage, 42, Article 103101. https://doi.org/10.1016/j.est.2021.103101 |
[45] |
Tamraparni, A., Shamberger, P.J. and Felts, J.R. (2020) Cyclic Stability of Lithium Nitrate Trihydrate in Plate Fin Heat Exchangers. Applied Thermal Engineering, 179, Article 115476. https://doi.org/10.1016/j.applthermaleng.2020.115476 |
[46] |
Momeni, M., Askar, S. and Fartaj, A. (2023) Thermal Performance Evaluation of a Compact Two-Fluid Finned Heat Exchanger Integrated with Cold Latent Heat Energy Storage. Applied Thermal Engineering, 230, Article 120815. https://doi.org/10.1016/j.applthermaleng.2023.120815 |
[47] |
Wang, C., Feng, L., Li, W., Zheng, J., Tian, W. and Li, X. (2012) Shape-Stabilized Phase Change Materials Based on Polyethylene Glycol/Porous Carbon Composite: The Influence of the Pore Structure of the Carbon Materials. Solar Energy Materials and Solar Cells, 105, 21-26. https://doi.org/10.1016/j.solmat.2012.05.031 |
[48] |
Meng, Z.N. and Zhang, P. (2017) Experimental and Numerical Investigation of a Tube-in-Tank Latent Thermal Energy Storage Unit Using Composite PCM. Applied Energy, 190, 524-539. https://doi.org/10.1016/j.apenergy.2016.12.163 |
[49] |
Huang, X., Alva, G., Liu, L. and Fang, G. (2017) Microstructure and Thermal Properties of Cetyl Alcohol/high Density Polyethylene Composite Phase Change Materials with Carbon Fiber as Shape-Stabilized Thermal Storage Materials. Applied Energy, 200, 19-27. https://doi.org/10.1016/j.apenergy.2017.05.074 |
[50] |
Li, M., Guo, Q. and Chen, Q. (2019) Thermal Conductivity Improvement of Heat-Storage Composite Filled with Milling Modified Carbon Nanotubes. International Journal of Green Energy, 16, 1617-1623. https://doi.org/10.1080/15435075.2019.1681426 |
[51] |
Zhang, P., Wang, Y., Qiu, Y., Yan, H., Wang, Z. and Li, Q. (2024) Novel Composite Phase Change Materials Supported by Oriented Carbon Fibers for Solar Thermal Energy Conversion and Storage. Applied Energy, 358, Article 122546. https://doi.org/10.1016/j.apenergy.2023.122546 |
[52] |
Ye, F., Ge, Z., Ding, Y. and Yang, J. (2014) Multi-Walled Carbon Nanotubes Added to Na2CO3/MgO Composites for Thermal Energy Storage. Particuology, 15, 56-60. https://doi.org/10.1016/j.partic.2013.05.001 |
[53] |
Tao, Y.B., Lin, C.H. and He, Y.L. (2015) Preparation and Thermal Properties Characterization of Carbonate Salt/Carbon Nanomaterial Composite Phase Change Material. Energy Conversion and Management, 97, 103-110. https://doi.org/10.1016/j.enconman.2015.03.051 |
[54] |
Warzoha, R.J. and Fleischer, A.S. (2015) Effect of Carbon Nanotube Interfacial Geometry on Thermal Transport in Solid–liquid Phase Change Materials. Applied Energy, 154, 271-276. https://doi.org/10.1016/j.apenergy.2015.04.121 |
[55] |
Wang, J.F., Xie, H.Q., Xin, Z. and Li, Y. (2010) Experimental Study on Palmitic Acid Composites Containing Carbon Nanotubes by Acid Treatment. Journal of Engineering Thermophysics, 31, 1389-1391. |
[56] |
Tian, B., Yang, W., Luo, L., Wang, J., Zhang, K., Fan, J., et al. (2016) Synergistic Enhancement of Thermal Conductivity for Expanded Graphite and Carbon Fiber in Paraffin/EVA Form-Stable Phase Change Materials. Solar Energy, 127, 48-55. https://doi.org/10.1016/j.solener.2016.01.011 |
[57] |
Fu, Y., He, Z., Mo, D. and Lu, S. (2014) Thermal Conductivity Enhancement of Epoxy Adhesive Using Graphene Sheets as Additives. International Journal of Thermal Sciences, 86, 276-283. https://doi.org/10.1016/j.ijthermalsci.2014.07.011 |
[58] |
Mehrali, M., Latibari, S.T., Mehrali, M., Indra Mahlia, T.M., Cornelis Metselaar, H.S., Naghavi, M.S., et al. (2013) Preparation and Characterization of Palmitic Acid/Graphene Nanoplatelets Composite with Remarkable Thermal Conductivity as a Novel Shape-Stabilized Phase Change Material. Applied Thermal Engineering, 61, 633-640. https://doi.org/10.1016/j.applthermaleng.2013.08.035 |
[59] |
Zhu, H., Gu, M., Dai, X., Feng, S., Yang, T., Fan, Y., et al. (2024) Mechanically Strong, Healable, and Recyclable Supramolecular Solid-Solid Phase Change Materials with High Thermal Conductivity for Thermal Energy Storage. Chemical Engineering Journal, 494, Article 153235. https://doi.org/10.1016/j.cej.2024.153235 |
[60] |
Cai, W., Yang, W., Jiang, Z., He, F., Zhang, K., He, R., et al. (2019) Numerical and Experimental Study of Paraffin/Expanded Graphite Phase Change Materials with an Anisotropic Model. Solar Energy Materials and Solar Cells, 194, 111-120. https://doi.org/10.1016/j.solmat.2019.02.006 |
[61] |
Zhang, Y., Li, W., Huang, J., Cao, M. and Du, G. (2020) Expanded Graphite/Paraffin/Silicone Rubber as High Temperature Form-Stabilized Phase Change Materials for Thermal Energy Storage and Thermal Interface Materials. Materials, 13, Article 894. https://doi.org/10.3390/ma13040894 |
[62] |
Cai, Z., Liu, J., Zhou, Y., Dai, L., Wang, H., Liao, C., et al. (2021) Flexible Phase Change Materials with Enhanced Tensile Strength, Thermal Conductivity and Photo-Thermal Performance. Solar Energy Materials and Solar Cells, 219, Article 110728. https://doi.org/10.1016/j.solmat.2020.110728 |
[63] |
Xu, T., Chen, Q., Huang, G., Zhang, Z., Gao, X. and Lu, S. (2016) Preparation and Thermal Energy Storage Properties of D-Mannitol/Expanded Graphite Composite Phase Change Material. Solar Energy Materials and Solar Cells, 155, 141-146. https://doi.org/10.1016/j.solmat.2016.06.003 |
[64] |
Rathore, P.K.S. and Shukla, S.K. (2021) Improvement in Thermal Properties of PCM/Expanded Vermiculite/Expanded Graphite Shape Stabilized Composite PCM for Building Energy Applications. Renewable Energy, 176, 295-304. https://doi.org/10.1016/j.renene.2021.05.068 |
[65] |
Jiang, Z., Ouyang, T., Yang, Y., Chen, L., Fan, X., Chen, Y., et al. (2018) Thermal Conductivity Enhancement of Phase Change Materials with Form-Stable Carbon Bonded Carbon Fiber Network. Materials & Design, 143, 177-184. https://doi.org/10.1016/j.matdes.2018.01.052 |
[66] |
Al Ghossein, R.M., Hossain, M.S. and Khodadadi, J.M. (2017) Experimental Determination of Temperature-Dependent Thermal Conductivity of Solid Eicosane-Based Silver Nanostructure-Enhanced Phase Change Materials for Thermal Energy Storage. International Journal of Heat and Mass Transfer, 107, 697-711. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.059 |
[67] |
Ma, C., Zhang, Y., Chen, X., Song, X. and Tang, K. (2020) Experimental Study of an Enhanced Phase Change Material of Paraffin/Expanded Graphite/Nano-Metal Particles for a Personal Cooling System. Materials, 13, Article 980. https://doi.org/10.3390/ma13040980 |
[68] |
Zheng, R., Zhou, H., Li, C. and Li, J. (2024) Synergistic Phase Change and Heat Conduction of Low Melting-Point Alloy Microparticle Additives in Expanded Graphite Shape-Stabilized Organic Phase Change Materials. Chemical Engineering Journal, 482, Article 149009. https://doi.org/10.1016/j.cej.2024.149009 |
[69] |
Şahan, N., Fois, M. and Paksoy, H. (2015) Improving Thermal Conductivity Phase Change Materials—A Study of Paraffin Nanomagnetite Composites. Solar Energy Materials and Solar Cells, 137, 61-67. https://doi.org/10.1016/j.solmat.2015.01.027 |
[70] |
Babapoor, A. and Karimi, G. (2015) Thermal Properties Measurement and Heat Storage Analysis of Paraffinnanoparticles Composites Phase Change Material: Comparison and Optimization. Applied Thermal Engineering, 90, 945-951. https://doi.org/10.1016/j.applthermaleng.2015.07.083 |
[71] |
Huang, Q., Wang, S., He, J., Xu, D., Abdou, S.N., Ibrahim, M.M., et al. (2024) Experimental Design of Paraffin/Methylated Melamine-Formaldehyde Microencapsulated Composite Phase Change Material and the Application in Battery Thermal Management System. Journal of Materials Science & Technology, 169, 124-136. https://doi.org/10.1016/j.jmst.2023.06.018 |
[72] |
Chen, J., Yang, D., Jiang, J., Ma, A. and Song, D. (2014) Research Progress of Phase Change Materials (PCMs) Embedded with Metal Foam (a Review). Procedia Materials Science, 4, 389-394. https://doi.org/10.1016/j.mspro.2014.07.579 |
[73] |
Xiao, X., Zhang, P. and Li, M. (2013) Preparation and Thermal Characterization of Paraffin/metal Foam Composite Phase Change Material. Applied Energy, 112, 1357-1366. https://doi.org/10.1016/j.apenergy.2013.04.050 |
[74] |
Xiao, X., Zhang, P. and Li, M. (2014) Effective Thermal Conductivity of Open-Cell Metal Foams Impregnated with Pure Paraffin for Latent Heat Storage. International Journal of Thermal Sciences, 81, 94-105. https://doi.org/10.1016/j.ijthermalsci.2014.03.006 |
[75] |
Deng, Y., Li, J., Qian, T., Guan, W., Li, Y. and Yin, X. (2016) Thermal Conductivity Enhancement of Polyethylene Glycol/expanded Vermiculite Shape-Stabilized Composite Phase Change Materials with Silver Nanowire for Thermal Energy Storage. Chemical Engineering Journal, 295, 427-435. https://doi.org/10.1016/j.cej.2016.03.068 |
[76] |
Reyes, A., Henríquez-Vargas, L., Rivera, J. and Sepúlveda, F. (2017) Theoretical and Experimental Study of Aluminum Foils and Paraffin Wax Mixtures as Thermal Energy Storage Material. Renewable Energy, 101, 225-235. https://doi.org/10.1016/j.renene.2016.08.057 |
[77] |
Li, W., Wang, Y. and Kong, C. (2015) Experimental Study on Melting/Solidification and Thermal Conductivity Enhancement of Phase Change Material Inside a Sphere. International Communications in Heat and Mass Transfer, 68, 276-282. https://doi.org/10.1016/j.icheatmasstransfer.2015.09.004 |
[78] |
Su, D., Jia, Y., Alva, G., Tang, F. and Fang, G. (2016) Preparation and Thermal Properties of N-Octadecane/Stearic Acid Eutectic Mixtures with Hexagonal Boron Nitride as Phase Change Materials for Thermal Energy Storage. Energy and Buildings, 131, 35-41. https://doi.org/10.1016/j.enbuild.2016.09.022 |
[79] |
Fang, X., Fan, L., Ding, Q., Yao, X., Wu, Y., Hou, J., et al. (2014) Thermal Energy Storage Performance of Paraffin-Based Composite Phase Change Materials Filled with Hexagonal Boron Nitride Nanosheets. Energy Conversion and Management, 80, 103-109. https://doi.org/10.1016/j.enconman.2014.01.016 |
[80] |
Motahar, S., Nikkam, N., Alemrajabi, A.A., Khodabandeh, R., Toprak, M.S. and Muhammed, M. (2014) A Novel Phase Change Material Containing Mesoporous Silica Nanoparticles for Thermal Storage: A Study on Thermal Conductivity and Viscosity. International Communications in Heat and Mass Transfer, 56, 114-120. https://doi.org/10.1016/j.icheatmasstransfer.2014.06.005 |