复合相变材料导热增强研究进展
Research Progress on Thermal Conductivity Enhancement of Composite Phase Change Materials
DOI: 10.12677/japc.2025.141011, PDF, HTML, XML,   
作者: 冯思雨, 马伟杰, 任 晋, 樊冬娌*:南通大学化学化工学院,江苏 南通;张 恒*:梦百合家居科技股份有限公司,江苏 如皋
关键词: 复合相变材料导热系数热能存储Composite Phase Change Materials Thermal Conductivity Thermal Energy Storage
摘要: 基于相变材料的热能储存系统被认为是提高能源效率和可持续性的最有效方法之一,近年来备受关注。由于相变材料储放热速率低,导热系数小,极大的限制了其实际应用。目前常用复合手段增强体系的导热性能,如插入翅片,引入高导热填料等。本文综述了国内外复合相变材料导热性能方面的研究进展,分类归纳了提高复合相变材料热导率的方法和导热增强机理,并对复合相变材料导热性能增强研究的挑战和前景进行了展望。
Abstract: Thermal energy storage systems based on phase change materials (PCMs) are considered to be one of the most effective approaches for improving energy efficiency and sustainability, and have attracted significant attention in recent years. However, their practical application is greatly limited due to the low heat storage and release rate as well as the small thermal conductivity of PCMs. Currently, composite methods such as the addition of fins and high thermal conductivity fillers are commonly employed to enhance the thermal conductivity of these systems. In this review, the research progress on thermal conductivity of composite phase change materials at home and abroad is presented, and the methods and mechanisms of improving thermal conductivity of composite phase change materials are classified and summarized. Finally, the main challenges and outlooks of composite phase change materials were outlined.
文章引用:冯思雨, 马伟杰, 任晋, 张恒, 樊冬娌. 复合相变材料导热增强研究进展[J]. 物理化学进展, 2025, 14(1): 107-126. https://doi.org/10.12677/japc.2025.141011

1. 引言

能源是促进世界各国科技进步和经济发展的战略资源。近年来,各国对能源需求的不断增加导致化石类能源趋于枯竭;同时,由于大量化石燃料的燃烧排放出的二氧化碳导致了全球气候变暖日益加剧[1] [2],迫使人们寻求新的、环境友好和可循环再生型的能源以代替传统的化石能源。然而,可再生能源(特别是太阳能和风能)的间歇性限制了其实际应用,这要求在能源系统中使用强大、可靠和高效的存储单元。科学家们利用各种先进技术设计了一系列的混合能源系统。热能存储系统TES (Thermal Energy Storage)可以减少可再生资源对碳基燃料的依赖,缓解全球变暖问题。能源过剩时,多余的热量通过TES技术储存并在需要时释放热量。科学研究正面临着减缓全球变暖和整合可再生能源的严峻挑战,对于如何深度、高效构建TES已成为近年来科学研究的重大热点。

Figure 1. Ways to increase thermal conductivity

1. 提高热导率的方式

目前储热技术总体分为三种,分别为潜热储热技术、显热储热技术、反应储热技术。其中潜热储能[3]-[5]即相变储热技术,依靠相变过程中能量的吸收和释放来实现。潜热储热技术有着诸多优点,比如具有高储热密度、可实现接近恒温的热存储与释放[6]、能量密度高制备工艺比较简单、成本低廉。而且在三种储热技术中,相变储热技术是最有可能在未来短期内实现工业化应用的储热技术。在这种情况下,相变材料PCMs (Phase Change Materials)逐渐成为储热技术领域的研究热点。PCMs的潜热储能已应用于太阳能热存储、节能建筑、智能穿戴、光热除霜、军事热隐身等多个领域。可供选择的PCMs种类繁多。然而,传统的PCMs有着一些缺陷,比如相分离、低热传导率、过冷、泄漏等。PCMs主要包括有机材料、无机材料和共晶材料,前者包括石蜡、脂肪酸和多元醇,后者则包括水合盐、熔融盐以及金属或合金材料。能量密度和功率密度决定PCMs的潜热储能系统的有效性。能量密度主要受PCMs相变焓影响,功率密度取决于PCMs与工作流体间的热传递,热传导在传热中占主导并决定TES系统储放热功率密度。非金属PCMs导热率低,难以满足高功率密度要求,增强其导热性是解决实际应用关键问题。针对上述问题,目前解决方法有,插入翅片[7]-[9]和在PCMs中引入高导热填料[10]-[14]构建连续传热途径。本文将从翅片和高导热材料添加角度详细讨论增强导热的方式(图1),旨在为进一步增强PCMs导热提供更深层次的理解与参考,并对其未来发展进行展望。

2. 翅片

PCMs在多种传统规则容器中,如矩形、圆柱形、球形和环形,展现出标准的热特性[15]-[19]。先前已有研究探讨了PCMs在梯形、三角形、椭圆形及半圆形等不规则容器中的相变过程[20]-[26]。因其易于制造且应用广泛而备受关注,例如在太阳能储能系统中[27],环形容器(即PCMs位于内管与外壳之间的环状空间)。相变过程本身具有自限性,且在储放热过程中固体-液体界面的阻力会不断增加[16],阻碍了PCMs的应用。自然对流传热容易导致容器顶部的PCMs过热,而底部则是由导热和低熔点效应主导。因此对于PCMs环形容器而言,引入翅片和外部场可以在不改变PCMs介质的情况下提高系统整体的热传递性能。翅片被视为一种被动增强技术,因为它们专注于几何或表面修改;而外部场则属于主动技术,需要额外功率[17]

翅片与PCMs之间的热相互作用不仅包括对流传热,还涵盖重力效应、熔化区域内自由对流、多重相变前沿及温度依赖特性[28]。增加翅片体积将减少PCMs的总体积,从而影响其存储容量。目前环形和纵向翅片是最常见的研究对象,其次是较新颖的泡沫和针形翅片[29]

环形、螺旋形或圆形翅片可被定义为垂直于流动方向并沿支撑管横截面附着的圆盘。纵向或径向翅片则沿支撑管外表面轴向延伸,与流动轴平行。这两种类型的翅片均为壳管式换热器中常见的附件。当高温流体单向流动时,翅片还能够提供额外的热阻,因此许多研究者关注在中心轴向上改变翅片的直径和长度[30] [31]图2展示了壳管式换热器中环形与径向翅片的基本设计[32]

Figure 2. Types of fins used in Shell and tube type heat exchanger [32]

2. 管壳式换热器中环形与纵向翅片的示意图[32]

2.1. 环形翅片和纵向翅片

在环形翅片的研究中,Shank等人[31]制造了铜制翅片,并发现随着翅片数量的增加、进口高温导热流体温度的提升以及流速的加大,储热/放热时间显著缩短。如图3a)图3b)所示Tiari等人[30]使用石蜡(RT-55)作为相变材料,研究了锥形几何结构的环形翅片。由于热量从储能系统的一侧产生,因此向中心方向直径较大的配置能够更有效地分散系统内的热量。此外,由于表面积的增加,相比于翅片数量,翅片厚度被证明相对不重要。如图3c)图3d)所示Sanchouli等人[33]设计了一种由直条和圆形条组成的新型环形翅片网格,并将其性能与传统板状环形翅片进行了比较。在具有相似体积条件下,该网格状环形翅片能够在圆柱形储能系统横截面上覆盖更广泛区域,从而提供更佳的与PCMs接触面积。同时,应控制翅片间距以优化相对热边界层。

Figure 3. a) Design of various fin configurations and b) temporal evolution of charging process [30]; c) conventional annular fin and grid annular fin and d) grid annular fins components case studies [33]

3. a)各种翅片配置设计和b)装置2b储热过程[30];c)常规环形翅片网格环形翅片示意图;d)网格环形翅片组件及其余案例研究的圆形截面[33]

环形翅片的制造更为简便且成本较低,但两种翅片在性能上存在显著差异。Tiari等[34]在一个垂直圆柱形TES单元中,采用铜材质制作了环形翅片与纵向翅片,如图4a)所示。在各个配置中,翅片的体积保持一致。基准实验未使用任何翅片,其充电和放电时间分别为48小时和42.5小时。配备八个纵向翅片后在储放热时间上分别实现了86.6%与70%的显著缩短。尽管环形翅片在横向散热性能方面表现优越,但纵向翅片有助于增强热能在整个TES单元中的渗透性。如图4b)图4c)所示,Liu等[35]发现,在PCMs熔化的早期阶段,纵向翅片表现出更佳的效果,而在后期阶段,则是环形翅片占据优势。从进气区域开始,传导作用最为主导,而对流效应逐渐增强。当熔化发生时,在环形模型中液态PCMs形成漩涡,而其他模型仅产生小规模漩涡。纵向鳍的阻碍限制了液态PCMs的流动,从而降低了大面积表面热交换的效率。而环形模型则引入了更高的对流速率,使得其熔化时间比其他模型快13.7%。Dhaidan等人[36]也将环形、纵向及其穿孔对应物作为热路径进行比较。尽管所有类型的翅片均有效地将熔化时间缩短超过60%,但圆形穿孔翅片在性能上优于其他类型,提高幅度达到70%,穿孔设计促进了自然对流运动。

为了改善PCMs-TES系统较差的热性能,包括纵翅片和圆翅片在内,目前已有多种翅片类型被应用。研究表明,翅片的使用改善了了PCMs热性能差的特性。Agyenim [37]进行了四项实验,研究了三种传热技术加速PCMs在管壳式换热器(STHX)中的熔化过程。技术包括使用:纵翅片、圆翅片和多管系统。结果表明,与其他情况相比,多管体系在熔融过程中获得了最好的性能。Sciacovelli等[38]通过数值研究了通过引入异形翅片来改善STHX中PCMs的热性能。研究了单y翼和双y翼分岔对y翼外形的优化设计,以及分岔角度的影响。

Figure 4. a) Various fin configurations with thickness and fin design [34]; b) liquid fraction contours of the annular model and longitudinal model in the middle section and c) streamlines and temperature contours and of annular model and longitudinal model [35]

4. a)垂直圆柱形TES装置的翅片结构[34];b)中间截面环形模型和纵向模型的液相分量轮廓与c)环形模型和纵向模型的流线和等温度线[35]

Al-Mudhafar等[39]采用数值模拟方法评估了翅片配置对环形热储单元中PCMs充电过程的影响。研究了六种不同形状的纵向翅片(包括传统纵向翅片、T型翅片和树形翅片)对设备性能提升的作用,如图5c所示,并将这三种形状的结果与无翅片情况进行了比较。结论表明,与传统纵向和树形翅片相比,采用相同的材料时添加T型翅片可显著提高熔化速度,使熔化时间缩短33%。

2.2. 销钉和板翅片

针状和板状翅片在电子设备、航空器、太阳能蒸馏器以及交通与医学等领域的高热组件散热中得到了广泛应用。针状和板状翅片并非单一的管状分离结构,而是垂直于基底表面的扩展面,以增加有效表面积。Xu等人[40]比较了基于十二烷的针状翅片热沉(PFHS)与空热沉(EHS)的熔化轮廓,如图6a)图6b)所示。在超重力条件下施加大热通量时,针状翅片能够缩短熔化时间,有效冷却航空器。同时,增强超重力也会提高熔化PCMs液位的陡度,从而导致热壁上出现无PCMs区域。这可能引发过热损坏,因此需要在更广泛的超重力、热通量及材料条件下进行进一步研究以寻求解决方案。接下来,Jaworski[41]通过数值模拟开发了一种新型管翅式散热器,用于电子冷却应用中的散热,如图6c)所示。由于该管翅式散热器具有较高的传热表面积及特定气流模式,因此能够有效地降低微芯片温度至50℃以下。在仅使用少量PCMs的情况下,该散热器成功避免了微处理器过热问题。

此外,Kateshia等[42]将棕榈酸作为相变组分,并结合其在太阳能蒸馏器中的针翅,以提升吸收性能。在PCMs中添加高导热针翅显著提高了其导热性。研究表明,在相同热负荷条件下,采用PCMs填充的

Figure 5. a) Temperature and liquid fraction distributions. (Left) Initial design. (Right) Optimal design and b) temperature and liquid fraction distributions for the optimal fin with two bifurcations [38]; c) The computational domains for the various heat exchangers with different fin configurations [39]

5. a)单分叉纵向模型的液相分量轮廓和b)双分叉纵向模型的液相分量轮廓不同翅片配置的各类换热器计算域示意[38];c)四种纵向翅片:无翅片、T型翅片、纵向翅片、树形翅片[39]

Figure 6. a) Configuration of the heat sinks and b) assembly of the heat sinks [40]; c) heat spreader for electronics cooling with pipe-fins filled with PCM [41]; d) numerical model: LHTES unit with a single fin and two-dimensional diagram [44]; e) thermally stable and unstable layers areas in spherical capsule [43]; f) sub-cooling of LiNO3·3H2O and CHNH for 500 solidification and melting cycles in the heat exchanger [45]; g) CM-air-liquid heat exchanger proposed in this study [46]

6. a)散热器的配置和b)散热器的组装[40];c)装有PCMs的管翅式电子冷却散热器[41];d)数值模型单鳍LHTES单元和二维图[44];e)热稳定层和热不稳定层在球形胶囊内分布情况[43];f) LiNO3·3H2O和CHNH在换热器中过冷500次凝固–熔化循环[45];g)空气–液体热交换器原理[46]

球形外壳在热性能上较传统圆柱形外壳提升了8%,同时淡水产量也提高了8%。Sharma等[43]通过ANSYS Fluent软件对单个板翅片的球形PCMs填充胶囊的热性能进行了深入研究。由于PCMs受到约束,研究发现最佳翅片位置位于热交换器(TES)的中心,如图6e)所示,此时PCMs的熔化时间缩短了43.6%。值得注意的是,位置较低的翅片能够更快地促使PCMs熔化,从而形成向上流动的贝纳德对流层,使得自然对流在PCMs熔化过程中占据主导地位。此外,Wu等人[44]也探讨了长度与翅片间距对球形PCMs填充胶囊热性能影响的问题。通过数值模拟确定了PCMs基础的TES单元中板翅式换热器的位置。图6d)左侧图中的每一列代表一个配备单个板翅的存储单元,而右侧图则展示了其二维结构示意图。由于Rayleigh-Benard对流的影响,随着板翅长度的增加和位置的降低,总熔化与凝固时间显著缩短。然而,降低板翅位置可能导致凝固过程中温度分布的不均匀性。

Tamraparni等人[45]在真空密封的板翅换热器中采用锂硝酸三水合物(LiNO3∙3H2O)与水作为高温流体,并引入成核剂以抑制过冷现象,其复合材料展现出290 J/g的高潜热,同时保持超过500次循环的强稳定性,如图6f)所示,显示出将PCMs应用于潜在TES设计的前景。此外,Momeni等人[46]还设计了一种创新型交叉流动空气–液体热交换器,原理如图6g)所示,以用于车辆空调系统。在该设计中设置了平行于气流方向的微通道,以促进被动冷却效果。加入PCMs后,排出的空气可在550秒内降温至低于29.5℃,而未使用PCMs时仅需80秒。

插入翅片不仅增加了表面积,还显著增强了PCMs与热源之间的热传递效率。同时,翅片通过减少所需相同体积内的PCMs,从而降低了能量存储。此外,翅片可能会对自然对流运动产生阻碍。因此,在优化低温热能储存(LHTES)系统设计时,必须充分考虑这些矛盾和挑战性的问题。未来的研究应更多关注新颖或创新的翅片形状,而非传统常见形状。另一方面,大多数数值研究假设墙体温度或流体温度为恒定热负荷。然而,在实际应用中,尤其是在可再生能源领域,热负荷往往是间歇性的。因此,建议在未来的数值研究中纳入间歇性条件。此外,引入高精度测量设备将有助于提高实验结果的准确性。同时,需要在后续研究中重视LHTES系统的经济因素。

3. 添加导热材料

除了翅片之外,添加导热材料也可以提高PCMs导热性能。纯PCMs的热导率较低,因此许多研究致力于通过添加高热导率的助剂来提升PCMs的热导性能。本章节将助剂分为碳基材料、金属基材料和其他材料。

3.1. 碳基材料

基于碳的材料因其优异的导热性、稳定的化学特性、广泛的适用范围及低密度,已成为最受欢迎的添加剂之一[47]。这些材料已经得到了广泛的研究与应用。基于碳的材料展现出多种形态结构,包括碳纤维(CF)、石墨烯碳纳米管(CNT)、石墨烯和膨胀石墨(EG) [48]

3.1.1. 1D石墨烯碳纳米管、碳纤维

碳纤维(CF)是一种无机纤维状的碳化合物,其在平面方向上的热导率高达900 W/m K [49]。此外,CF具备出色的耐腐蚀性和抗化学侵蚀性等特性,使其与多种PCMs具有良好的兼容性。Li等[50]在CNTs表面接枝多元醇,接枝处理使CNTs缩短,减少了团聚,因而与石蜡间的界面热阻降低,使复合材料的热导率由0.43 W/(m·K)上升至0.79 W/(m·K)。他们还将MWCNT和KOH在室温下球磨6 h后与石蜡混合,使石蜡/MWCNTs的热导率提高了42.3%。上述研究都采取对碳填料进行改性的方式使热导率进一步提高,究其原因,在于表面引入的官能团可以改进填料与基体间的相容性,降低碳填料与PCMs间的界面声子散射,从而降低界面热阻。此外,鉴于碳材料类填料的形貌多样,不同形态间填料的协同作用则为研究降低填料与PCMs间的界面热阻提供另一思路。Zhang等[51]通过压力成型和真空处理方法,将定向排列的连续碳纤维(CFs)和棕榈酸(PA)/烯烃嵌段共聚物(OBC)共混物混合制成了一种新型复合相变材料(CPCMs)。实验结果表明,CPCMs中定向排列的连续碳纤维提供了定向的高效热传输通道,有效提升了材料的热导率,如图7a)图7b)所示。CPCMs的热导率在碳纤维长度方向和径向上分别达到了5.84 W/(m·K)和1.34 W/(m·K)。

Figure 7. a) Schematic diagram of the preparation process of the CPCMs and b) schematic of the heat conduction models of the CPCMs [51]; c) SEM images of MWCNTs and composite Na2CO3/MgO PCMs with added MWCNTs sintered at high temperature [52]; d) SEM images of CPCM samples with 1 wt.% nanomaterials and e) effects of nanomaterial microstructure and mass fraction on CPCM thermal conductivity [53]

7. a) CPCMs制备工艺流程示意图和b)CPCMs热传导模型示意图[51];c) MWCNTs的SEM图像和添加MWCNTs后在高温下烧结的Na2CO3/MgO相变材料的SEM图像[52];d)含有1 wt%纳米材料的CPCMs样品的SEM图像和e)纳米材料微结构和质量分数对CPCMs热导率的影响[53]

与碳纤维相比,碳纳米管(CNTs)具有高热导率、低密度和大比表面积的优点,同时它们由碳原子组成,密度接近有机物质的密度,容易与基于有机物质的基质形成稳定混合物[54] [55]。相对来说更常用。Ye等[52]使用Na2CO3,MgO和MWCNTs为复合PCMs原料,其中Na2CO3和MgO作为PCM和支撑材料。在MWCNTs质量分数分别为0.1%、0.2%、0.3%和0.5%的情况下,制备了一系列复合PCMs,SEM图像如7c)所示。结果表明,导热系数随MWCNTs质量分数的增加而增加,导热系数随测试温度的升高而增加。在120℃时,与不含MWCNTs的复合PCMs相比,添加0.5 wt% MWCNTs的复合PCMs的导热系数提高了69%。Tao等[53]使用四种类型的碳纳米材料作为填充剂来改善高温盐类PCMs的性能,添加的碳纳米材料按提高导热性能的能力大小排序依次为单壁碳纳米管(SWCNT)、单壁碳纳米管(MWCNT)、石墨烯和C60。特别是当SWCNT和MWCNT的加载量为1.5 wt%时,导热性能分别提高了约56.98%和50.05%,如图7e)所示。通过扫描电镜观察四种CPCM(含四种1 wt%纳米材料的PCMs)的微观结构(图7d)),观察发现,对于含MWCNT的CPCM,盐会在MWCNT表面形成晶体层,呈柱状这种层被称为纳米层,纳米层是导热增强的主要原因。不同柱间可形成网状结构,有助于有效连接热传导路径更适合提高导热性能。

3.1.2. 2D石墨烯

相比于传统的一维导热填料,单层二维结构的石墨烯由于其独特的物理和化学性质、大的长径比以及出色的热导率[56] [57],引起了广大研究者的关注。Mehrali等[58]使用浸渍法制备了形状稳定的棕榈酸(PA)/石墨烯纳米片(GNPs)PCMs,其中样品S1、S2和S3为分别添加了特定比表面积为300、500和750 m2/g的GNPs。在相变材料中,填充剂GNPs不仅可以增强热导率,还是PCMs的支撑材料防止泄漏,如图8a)。实验结果表明,随着GNPs特定表面积增加,吸附在PCMs上的GNPs显著增加。复合PCMs的热导率远高于纯棕榈酸,样品S1、S2和S3固态/液态时的热导率分别为2.75/2.54 W/(m·K),2.43/2.17 W/(m·K)和2.11/1.84 W/(m·K),如图8b)所示。这表明较小尺寸的GNPs对提高热导率更有效。因此,在实际应用中可以根据具体需求选择适当尺寸GNPs的特定表面积。

Cao等人[59]利用动态硼氧键与氢键作用制备了一种具有高机械强度的超分子固–固PCMs(PEG4K-Bx-PEG6K),如图8c)。将石墨烯纳米片(GNs)引入PEG4K-Bx-PEG6K中,通过压力诱导使GNs定向排列,获得了一种具有定向高导热性能的光热CPCMs,如图8d)所示。当GNs负载为5 wt%时,CPCMs的导热系数达到了3.639 W/m·K,如图8e),并实现了太阳能与热能的快速转换与储存。

Figure 8. a) Image of S3 at 25˚C and 80˚C and b) charging graph of PA and PAGNPs composite PCMs [58]; c) the synthetic procedures and structure of peg4k-bx-PEG6K and d) heat transfer mechanism and effective thermal conductivity enhancement of the composites and e) radial thermal conductivity of composites at room temperature [59]

8. a) PA/GNPsCPCMs形状稳定测试和b) PA/GNPsCPCMs储热温度曲线[58];c) Peg4k-bx-PEG6K的合成方法及结构和d) 热压诱导复合材料的热传导增强机制和e) 室温下复合材料的径向导热系数[59]

3.1.3. 3D膨胀石墨

膨胀石墨(EG)是多孔结构,具有热导率高(约2000 W/m·K)和比表面积大的特点,在用作PCMs传热增强添加剂时发挥着重要作用[60]。研究表明,即使添加的质量分数低,PCMs的热导率也会显著提高,如表1所示。Li等[13]利用膨胀石墨的多孔吸附特性来封装PCMs,并巧妙地应用了压力诱导技术来显著提高复合材料的定向热导率,制备出了令人印象深刻的定向热导率35W/(m·K),如图9a),为PCMs领域高导热复合材料的发展开辟了新的机遇和前景。Zhang等[61]将膨胀石墨、石蜡和硅橡胶进行混合,制备了一种形状稳定的复合材料,其热导率为0.56 W/(m·K),如图9b)。此外结果表明,该材料承受24 h的150℃烘烤后不会发生形状变化,经过20次循环测试前后差示扫描量热(DSC)曲线完全吻合,说明其具有良好的循环稳定性。Cai等[62]将膨胀石墨(EG)、石蜡以及热塑性弹性体(TPE)混合后热压成型,制备了一种CPCMs,如图9c)。研究发现,当添加质量分数7%的EG、63%的石蜡以及30%的TPE时,CPCMs的抗压强度增加至2.1 MPa,并且其热导率达到2.2 W/(m·K)。Xu等[63]则制备了D-甘露糖醇(有机物)/EGCPCMs,可广泛应用于太阳能热存储系统或废热回收系统等领域。EG在CPCMs中发挥着两个关键作用:一方面作为支撑材料,防止D-甘露醇的泄漏;另一方面则作为添加剂,以提升CPCMs的热导率。研究表明,当EG的加载量为15 wt%且最佳压缩密度达到1.83 g/cm3时,D-甘露醇/EGCPCMs的热导率可达7.31 W/m·K,相较于纯D-甘露醇(0.60 W/m·K)提高了约12倍。Shailendra[64]等研究了膨胀石墨和膨胀蛭石对低成本商用相变材料(OM37)热性能的综合影响,以OM37、膨胀蛭石和膨胀石墨为原料,通过物理共混和真空浸渍法制备出形状稳定的复合相变材料(ss-CPCM)。同时,研究了储热能力、相变参数、熔化/凝固响应、热稳定性、热可靠性和防泄漏性能。ss-CPCM-1、3、5和7在40.61℃、39.12℃、38.83℃和37.41℃时的熔化焓分别为114.23 J/g、111.56 J/g、105.08 J/g和99.32 J/g。在ss-CPCM中加入7 wt%的膨胀石墨,热导率提高了114.4%。Zhang [65]等人通过真空浸渍法,在制备过程中保留膨胀石墨的完整结构。当膨胀石墨含量为5~30 wt%时,复合材料的热导率达到2.67~10.02 W∙m1∙K1。同时,相变焓的测量值高达155~212 kJ∙kg1,表明该复合材料具有良好的热性能。此外,该复合材料在标准放电-充电和动态应力测试循环下,可将电池的工作温度控制在50 oC以下,表现出卓越的热管理行为。以上的研究表明,EG在复合型PCMs中发挥着两个关键作用:一方面作为支撑材料,防止相变材料的泄漏;另一方面则作为添加剂,以提升PCMs的热导率。

Table 1. Thermal conductivity of expanded graphite filled composite phase change materials

1. 膨胀石墨填充后复合相变材料的热导率表

材料组成

EG添加量(wt %)

热导率W/(m·K)

热导率提升(%)

EG + 蠕虫状石蜡[13]

40

35

695.5

EG + 石蜡 + 硅橡胶[61]

30

0.56

373.3

EG + 石蜡 + TPE [62]

7

2.2

1000

EG + D-甘露醇[63]

15

7.31

1200

EG + 膨胀蛭石 + 膨胀石墨[64]

7

0.311

114.4

EG + 石蜡 + 苯乙烯 − 乙烯 − 丙烯 − 苯乙烯[65]

30

10.02

2319

碳基材料作为添加剂具备高热导率、化学稳定性及低密度等显著优势。无疑,添加剂的高热导率有助于提升PCMs的整体热导性能,但最为关键的因素是添加剂的长径比。长径比较大的添加剂能够有效增强热导率。其中,碳纤维(CFs)、石墨烯和碳纳米管(CNTs)均具有较大的长径比;特别是CFs展现出优良的耐腐蚀性与抗化学侵蚀能力,而石墨烯则因其独特的二维单层结构而拥有卓越的化学与物理特性。此外,添加剂的几何形状也会对热导率提升产生影响。同时,不同制备技术亦会对热导率改善起到重要作用。值得一提的是,碳基添加剂通常具有较低密度(一般低于2.26 g/cm3),这为在系统质量受限条件下的实际应用提供了极大便利。

3.2. 金属基材料

众所周知,相对于碳基材料而言金属具有优异的热导率和混合能力。因此,多种不同类型的金属常被用作增强热能存储系统热导率的添加剂。常见的金属基添加剂有金属颗粒、金属氧化物、金属泡沫。

3.2.1. 金属颗粒

金属颗粒作为一种常见的金属添加剂,广泛应用于提升PCMs的热导率。Ghossein等[66]采用三种不同的固化方法(冰水浴、室温和烘箱固化),制备了三种不同质量分数的银纳米颗粒/十八烷复合PCMs。

Figure 9. a) Schematic diagram for synthesizing PCCs and constructing large-size aligned graphite sheets [13]; b) thermal conductivity coefficients of PW, SR and EG/PW/SR composites [61]; c) thermal conductivity of the as-prepared EG/OP70-TPE [62]

9. EG/OP70-TPE的a) CPCMs的制备过程[13];b) PW, SR, PCMs-1, PCMs-2和PCMs-3的热导率统计图[61];c)不同质量分数的OP70/EG热导率折线图[62]

无论所选固化方法如何,复合PCMs的热导率均有所提高,其中以烘箱固化法所获得的提升幅度最大,而冰水浴固化法则表现出最小增幅。同时,随着温度升高,复合PCMs的热导率也随之增加,并在接近熔点时出现显著跃升。此外,当银纳米颗粒负载量超过2%时,复合PCMs的热导率先呈现下降趋势,然后随着负载量进一步增加而上升,并在达到10%时达到最高值,在相同添加剂负载量(10%)下,通过三种不同固化方法制备得到的复合PCMs,其热导率分别为0.8319、0.8534和0.8754 W/(m·K)。Ma等[67],以EG为吸附材料,向PA-EG基CPCMs中加入不同的高导热纳米金属(铜、铝、铁和镍)提高其导热性,对不同纳米金属颗粒和添加量进行筛选后发现,EG的网状结构可以有效地抑制纳米金属铜聚集,如图10a)。PA-EG(11%)-Cu(1.9%)是过冷度最小,导热性能最佳的PCMs如图10b)图10c)。该CPCMs显著提高了热导率,相变潜热变化很小,相变温度满足人体最适宜的温度范围。

Zheng等人[68]以石蜡(PW)作为储能材料,膨胀石墨(EG)作为传热增强剂和支撑材料,制备了一种高性能形状稳定CPCMs具体合成步骤如图10e)。该CPCMs加入了与PW具有相同相变温度的低熔点合金(LMA)微颗粒,既可以提供额外的潜热,又可以在微观尺度上构建混合三维导热网络,如图10f),实现与EG的协同导热。当LMA和EG分别为4.55 wt%和9 wt%时,如图10f),三元CPCMs的导热系数可达5.842 W/(m·K),比纯PW高约16.4倍,且体积潜热没有明显降低,在储能能力、导热性和热循环稳定性方面表现出优异的特性。

3.2.2. 金属氧化物

众所周知,金属易于氧化形成金属氧化物。尽管金属氧化物的热导率低于金属,但其热导率仍显著高于大多数PCMs,因此,金属氧化物常被用作热导率增强剂。Sahan等[69]采用分散技术将石蜡与磁铁矿(Fe3O4)混合制备了石蜡-纳米磁铁矿复合材料,如图11a)。当Fe3O4含量分别为10 wt%和20 wt%时,石蜡–纳米磁铁矿复合材料的热导率提高了48%和60%,如图11b)

Figure 10. a) SEM analysis of PA-EG-Cu and b) comparison of the phase change temperature and phase change enthalpy and c) thermal conductivity of different nano-metals with different mass fractions [67]; d) axial, radial and average thermal conductivities of PW/EG CPCM and PW/LMA/EG CPCMs and e) Synthesis schematic diagram of CPCMs [68]

10. a) PA-EG-Cu的SEM图像和b)各比例相变温度和相变焓的比较和c)不同质量分数金属颗粒的热导率[67]。d) PW/EG CPCMs和PW/LMA/EG CPCMs的轴向、径向和平均导热系数和e) PW LMA CPCMs和PW LMAEG CPCMs合成示意图和f)用PW/LMA-3浸渍EG [68]

Figure 11. a) Preparation of PNMCs by dispersion technique and SEM and b) Thermal Conductivities of Paraffin and PNMCs [70]; c) reactions related to the synthesis of MMF and d) processing flow diagram containing synthesis mechanism of CPCM and e) thermal conductivity of paraffin, CPCM, CPCM@Al2O3, CPCM@ZnO and CPCM@CNT measured [71]

11. a)石蜡–纳米磁铁矿复合材料制备流程和SEM和b)石蜡和PCMs的导热系数[70]。c) MMF有关的合成示意图和d)含CPCMs合成机理的加工流程图和e)石蜡、CPCMs、CPCMs@Al2O3、CPCMs@ZnO和CPCMs@CNT的导热系数[71]

此外,通过直接合成法[70],将SiO2、Al2O3、Fe2O3、ZnO及其混合物添加至石蜡中以提升PCMs的热导率。各种添加剂均能有效提高石蜡的热导率,并且随着添加剂含量的增加,其热导率可显著提升。当添加剂含量达到2%时,混合添加剂所制得的复合PCMs展现出最高的热导率(0.724 W/m·K)。Huang等人[71]通过甲醇修饰三聚氰胺甲醛(MF)得到甲基化三聚氰胺甲醛(MMF),减少了甲醛解离量,降低了其对人体健康和环境的危害,从而制备出一种安全无毒型微胶如图11c)图11d)。再加入三种具有相同含量(10 wt%)的不同种类的导热填料,即添加纳米Al2O3、纳米ZnO、CNTS,制备成一种CPCMs。其中含CNTS的CPCMs的导热系数最高,为0.50 W/m·K,如图11e)。此外,与Al2O3和ZnO相比,CNTS的加入显著提高了制备样品的储热能力,其中Al2O3制备的CPCMs的潜热为126.98 J/g,ZnO制备的CPCMs的潜热为125.86 J/g,而CNTS制备的CPCMs的潜热为139.64 J/g。

3.2.3. 金属泡沫

金属泡沫是一种具有多孔结构的金属材料,内部含有大量充气的孔隙[72]。Xiao等[73]采用真空浸渍法制备了石蜡/金属泡沫CPCMs,如图12a)图12b)其中所用的金属泡沫包括泡沫镍和泡沫铜。测量

Figure 12. a) Images of metal foam and paraffin/metal foam composite PCMs with different pore sizes and b) experimental and calculated thermal conductivities of paraffin/nickel foam composite PCMs and paraffin/copper foam composite PCMs [73]; c) effective thermal conductivities of composite PCMs and d) impregnation ratios of paraffin/Copper foam and nickel foam composite PCMs [74]; e) schematic diagram of the preparation process of Ag NW and PEG–Ag/EVM ss-CPCMs [75]

12. a)不同孔径的金属泡沫和石蜡/金属泡沫复合PCMs的图像和b)石蜡/泡沫镍复合变材料和石蜡/泡沫铜复合变材料导热率[73]。c)复合PCMs有效导热系数和d)不同孔径石蜡/金属泡沫(铜和镍)复合PCMs的浸渍率[74]。e) Ag NW和PEG-Ag/EVM ss-cPCMs制备工艺示意图[75]

结果表明,与纯石蜡(热导率为0.305 W/(m·K)相比,石蜡与泡沫镍复合后,其热导率提高至1.2 W/(m·K),约提升三倍。而5 PPI (每英寸孔隙数)的泡沫铜则将石蜡的热导率从0.305 W/(m·K)提升至4.9 W/(m·K),实现了约15倍的增幅。Xiao等[74]进一步研究了石蜡/金属泡沫体系中的热导率增强现象。他们利用纯石蜡、泡沫镍以及不同孔径和孔隙率的泡沫铜制备CPCMs。如图12c)图12d)与纯石蜡相比,当孔隙率分别为96.95%、92.31%及88.89%,且孔径为25 PPI时,石蜡/铜泡沫CPCMs的热导率分别提高了约13倍、31倍和44倍。尽管在提升热导率方面镍泡沫不如铜泡沫,同样孔径的镍泡沫,当体积比为97.45%、94.24%及90.61%时,热导率比纯石蜡分别提升3倍、4倍和5倍,因此,可以得出结论:降低气体填充比例可有效提高整体热导率,而在同一气体填充比例下,改变孔径对热导率并无显著影响。

此外,还有其他形式的金属基材料添加剂。例如,Deng等[75],用银纳米线作为热导率改善剂,与聚乙二醇(PEG)、膨胀蛭石(EVM)及银纳米线(Ag NW)混合,以制备具有优良成型特性的复合PCMs,如图12g)。当复合PCMs中含有7.1 wt%、13.7 wt%和19.3 wt%的Ag NW时,其热导率分别为0.36、0.51和0.68 W/m. K,较纯PEG (0.06 W/m K)分别提升6.0倍、8.5倍和11.3倍,同时也显著高于PEG/EVM复合PCMs (0.25 W/m K)的1.44倍、2.04倍和2.71倍。这表明EVM与Ag NW均能有效提高PEG的热导率(图12h))。Reyes等[76]将8% w/w的铝箔与石蜡混合,其中铝箔由三种不同结构组成。实验结果显示,各种铝箔结构对热导率提升均产生了积极影响,其中石蜡与水平打孔圆盘结构中的铝箔组合所获得的热导率,最高达到0.63 W/m. K,是纯石蜡0.31 W/(m·K)的约两倍。Li等[77]研究了内部含有铝粉的球体PCMs,通过观察熔化及凝固时间缩短,可以证明铝粉能够有效提高PCMs的热导率。在熔化过程中,相较于均匀分散的铝粉,沉积在球体上的铝粉对热导率提升更具效果。

碳基和金属基添加剂各具优缺点,基添加剂具有高热导率、稳定的热与化学性能、低密度及良好的相容性等显著优势。然而,对于某些碳基添加剂而言,其加工与制备过程可能较为复杂。相比之下,由于其高密度、不均匀性导致的不稳定热传递以及对其他化学物质的高度反应性,金属基添加剂在实际应用中面临诸多限制。因此,碳基添加剂在应用上展现出更大的潜力。在设计热能储存系统时必须充分考虑金属泡沫的特性。显然,当与高熔点PCMs结合使用时,碳基泡沫是确保工艺可重复性的最佳选择;而另一方面,如果所用PCMs熔点较低,则由于其更高的热导率,金属基泡沫被视为更佳选择。

3.3. 其他材料

除了碳基材料和金属基材料的添加剂外,还引入了其他一些添加剂,如硼氮化物和二氧化硅,以提升PCMs的热导率。不同状态时,温度变化对复合材料热导率的影响不一样。Su等[78]采用六方氮化硼(h-BN)来增强十八烷与硬脂酸共晶PCMs的热导率。当HBN含量为10 wt%的复合PCMs导热最佳,其在固态时的热导率为0.3220 W/(m·K),而在液态时则为0.1764 W/(m·K)。与原始共晶体(固态时为0.2982 W/(m·K),液态时为0.1512 W/(m·K))相比,固态和液态下的热导率分别提升了8.0%和16.7%。这表明h-BN更适合于增强熔融状态下的热导性能。此外,Fang等[79]h-BN纳米片作为导热填料制备了石蜡/六方氮化物(h-BN)纳米片复合PCMs。从图13a可以看出,固体状态下(虚线左侧)导热率总体趋势是随着温度的升高略有增加,在50℃达到峰值后直线下降,而液体状态下(虚线右侧)的影响则较小。h-BN的加入量越大,复合材料的导热系数越高。当50℃,h-BN纳米片的添加量10 wt%时,复合PCMs导热系数最高,为0.53 W/(m·K)。同时,由于导热系数的增强,相变速率加快。Motahar等[80]将介孔二氧化硅(MPSiO2)分散到正十八烷中,制备了一种新型复合PCMs。在凝固和熔化状态下,采用瞬态平面热源技术测定复合材料PCMs在5℃~55℃之间的导热系数,如图13b)图13c)。在凝固状态下(5℃~20℃)复合PCMs的导热率持续下降,当MPSiO2的负载为3 wt%时,复合PCMs的导热系数在5℃时比纯PCMs的导热系数提高了5.1%。在熔融状态下,导热系数与温度成反比,与MPSiO2含量成正比,且在55℃,MPSiO2添加量为5 wt%时,导热系数提高5.5%。

Figure 13. a) Measured thermal conductivity of the paraffin-based composite PCMs as a function of temperature at various loadings of h-BN nanosheets [79]; b) Thermal conductivity of PCM/MPSiO2 as a function of temperature for various mass fractions of MPSiO2 nanoparticles in solid phase and c) in liquid phase.and SEM and TEM micrographs of MPSiO2 particles [80]

13. a)在不同负载h-BN纳米片的情况下,石蜡基复合PCMs热导率随温度变化图[79]。b)不同质量分数的PCMs/MPSiO2纳米颗粒固相导热系数随温度的变化规律和c)不同质量分数的PCMs/MPSiO2纳米颗粒液相的导热系数随温度的变化规律[80]

4. 结论与展望

热传导率是影响热能储存系统效率的关键因素,提升热传导率是提高复合相变材料整体性能的有效途径。因此,本文重点探讨了两种增强PCMs热传导率的方法,包括插入翅片和添加高热导率填料。翅片的插入增加了表面面积,增强了PCMs和热源之间的传热。同时,由于减少了相同体积的储热所占用的PCMs的数量,翅片减少了存储的能量。此外,翅片可能会阻碍自然对流的运动。因此,在未来的工作中,必须考虑这些冲突和具有挑战性的问题,以优化LHTES系统的设计。此外,在未来的研究中,应该更多地考虑新颖或创新的翅片形状,而不是常见的翅片形状。另一方面,大多数数值研究认为恒定的壁面温度或HTF温度是热负荷。然而,在实际应用中,特别是在可再生能源中,热负荷是瞬态的。因此,建议在今后的数值研究中考虑间歇条件。此外,使用高精度的测量装置可以提高实验工作结果的正确性。此外,LHTES系统的经济因素需要在未来的研究中纳入。其他一些技术,如添加纳米颗粒、附着金属泡沫、采用热管等,未来可与翅片结构相结合。更好的传热性能通常可以通过不同方式的组合来实现。然而,除了添加纳米颗粒外,关于新的组合增强手段的研究较少,它是未来研究的一个潜在领域。

NOTES

*通讯作者。

参考文献

[1] Zhou, L., Wang, X., Wu, Q., Ni, Z., Zhou, K., Wen, C., et al. (2024) Carbon Nanotube Sponge Encapsulated Ag-Mwcnts/PW Composite Phase Change Materials with Enhanced Thermal Conductivity, High Solar-/Electric-Thermal Energy Conversion and Storage. Journal of Energy Storage, 84, Article 110925.
https://doi.org/10.1016/j.est.2024.110925
[2] Medhaug, I., Stolpe, M.B., Fischer, E.M. and Knutti, R. (2017) Reconciling Controversies about the ‘Global Warming Hiatus’. Nature, 545, 41-47.
https://doi.org/10.1038/nature22315
[3] Xiao, Q., Yuan, W., Li, L. and Xu, T. (2018) Fabrication and Characteristics of Composite Phase Change Material Based on Ba(OH)2·8H2O for Thermal Energy Storage. Solar Energy Materials and Solar Cells, 179, 339-345.
https://doi.org/10.1016/j.solmat.2017.12.032
[4] Gao, H., Wang, J., Chen, X., Wang, G., Huang, X., Li, A., et al. (2018) Nanoconfinement Effects on Thermal Properties of Nanoporous Shape-Stabilized Composite PCMs: A Review. Nano Energy, 53, 769-797.
https://doi.org/10.1016/j.nanoen.2018.09.007
[5] Huang, X., Chen, X., Li, A., Atinafu, D., Gao, H., Dong, W., et al. (2019) Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage Applications. Chemical Engineering Journal, 356, 641-661.
https://doi.org/10.1016/j.cej.2018.09.013
[6] Agyenim, F., Hewitt, N., Eames, P. and Smyth, M. (2010) A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS). Renewable and Sustainable Energy Reviews, 14, 615-628.
https://doi.org/10.1016/j.rser.2009.10.015
[7] Jourabian, M., Farhadi, M., Sedighi, K., Darzi, A.R. and Vazifeshenas, Y. (2011) Simulation of Natural Convection Melting in a Cavity with Fin Using Lattice Boltzmann Method. International Journal for Numerical Methods in Fluids, 70, 313-325.
https://doi.org/10.1002/fld.2691
[8] Dhaidan, N.S. and Khodadadi, J.M. (2017) Improved Performance of Latent Heat Energy Storage Systems Utilizing High Thermal Conductivity Fins: A Review. Journal of Renewable and Sustainable Energy, 9, Article 034103.
https://doi.org/10.1063/1.4989738
[9] Sharma, D.K., Agarwal, P. and Prabhakar, A. (2023) Effect of Fin Design and Continuous Cycling on Thermal Performance of PCM-HP Hybrid BTMS for High Ambient Temperature Applications. Journal of Energy Storage, 74, Article 109360.
https://doi.org/10.1016/j.est.2023.109360
[10] Wang, J., Shen, M., Liu, Z. and Wang, W. (2022) MXene Materials for Advanced Thermal Management and Thermal Energy Utilization. Nano Energy, 97, Article 107177.
https://doi.org/10.1016/j.nanoen.2022.107177
[11] Guo, Z., Lin, F., Qiao, J., Liu, X., Liu, M., Huang, Z., et al. (2023) A Modified Kapok Fiber Based Phase Change Composite for Highly-Efficient Solar-Thermal Conversion. Nano Energy, 108, Article 108205.
https://doi.org/10.1016/j.nanoen.2023.108205
[12] Xu, J., Li, Y., Liu, T., Wang, D., Sun, F., Hu, P., et al. (2023) Room-Temperature Self-Healing Soft Composite Network with Unprecedented Crack Propagation Resistance Enabled by a Supramolecular Assembled Lamellar Structure. Advanced Materials, 35, Article 2300937.
https://doi.org/10.1002/adma.202300937
[13] Wu, S., Li, T., Tong, Z., Chao, J., Zhai, T., Xu, J., et al. (2019) High-Performance Thermally Conductive Phase Change Composites by Large-Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting. Advanced Materials, 31, Article 1905099.
https://doi.org/10.1002/adma.201905099
[14] Liu, Y., Zou, W., Zhao, N. and Xu, J. (2023) Electrically Insulating PBO/MXene Film with Superior Thermal Conductivity, Mechanical Properties, Thermal Stability, and Flame Retardancy. Nature Communications, 14, Article No. 5342.
https://doi.org/10.1038/s41467-023-40707-x
[15] Dhaidan, N.S. and Khodadadi, J.M. (2015) Melting and Convection of Phase Change Materials in Different Shape Containers: A Review. Renewable and Sustainable Energy Reviews, 43, 449-477.
https://doi.org/10.1016/j.rser.2014.11.017
[16] Hekmat, M.H., Haghani, M.H.K., Izadpanah, E. and Sadeghi, H. (2022) The Influence of Energy Storage Container Geometry on the Melting and Solidification of PCM. International Communications in Heat and Mass Transfer, 137, Article 106237.
https://doi.org/10.1016/j.icheatmasstransfer.2022.106237
[17] Dhaidan, N., Hashim, H., Abbas, A., Khodadadi, J., Almosawy, W. and Al-Mousawi, F. (2023) Discharging of PCM in Various Shapes of Thermal Energy Storage Systems: A Review. Journal of Thermal Science, 32, 1124-1154.
https://doi.org/10.1007/s11630-023-1793-z
[18] Punniakodi, B.M.S. and Senthil, R. (2021) A Review on Container Geometry and Orientations of Phase Change Materials for Solar Thermal Systems. Journal of Energy Storage, 36, Article 102452.
https://doi.org/10.1016/j.est.2021.102452
[19] Thonon, M., Fraisse, G., Zalewski, L. and Pailha, M. (2024) Simultaneous Charging and Discharging Processes in Latent Heat Thermal Energy Storage: A Review. Thermal Science and Engineering Progress, 47, Article 102299.
https://doi.org/10.1016/j.tsep.2023.102299
[20] Dhaidan, N.S. (2017) Melting Phase Change of N-Eicosane Inside Triangular Cavity of Two Orientations. Journal of Renewable and Sustainable Energy, 9, Article 054101.
https://doi.org/10.1063/1.5007894
[21] Chatterjee, S., Bhanja, D. and Nath, S. (2023) Numerical Investigation of Heat Transfer and Melting Process of Phase Change Material in Trapezoidal Cavities with Different Shapes and Different Heated Tube Positions. Journal of Energy Storage, 72, Article 108285.
https://doi.org/10.1016/j.est.2023.108285
[22] Dhaidan, N.S. (2020) Thermal Performance of Constrained Melting of PCM Inside an Elliptical Capsule of Two Orientations. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 45, 515-521.
https://doi.org/10.1007/s40997-020-00345-w
[23] Tian, M., Smaisim, G.F., Yan, S., Sajadi, S.M., Mahmoud, M.Z., Aybar, H.S., et al. (2022) Retracted: Economic Cost and Efficiency Analysis of a Lithium-Ion Battery Pack with the Circular and Elliptical Cavities Filled with Phase Change Materials. Journal of Energy Storage, 52, Article 104794.
https://doi.org/10.1016/j.est.2022.104794
[24] Dhaidan, N.S. and Khalaf, A.F. (2020) Experimental Evaluation of the Melting Behaviours of Paraffin within a Hemicylindrical Storage Cell. International Communications in Heat and Mass Transfer, 111, Article 104476.
https://doi.org/10.1016/j.icheatmasstransfer.2020.104476
[25] El Hadi Attia, M., Zayed, M.E., Kabeel, A.E., Abdullah, A.S. and Abdelgaied, M. (2023) Energy, Exergy, and Economic Analyses of a Modified Hemispherical Solar Distiller Augmented with Convex Absorber Basin, Wicks, and PCM. Solar Energy, 261, 43-54.
https://doi.org/10.1016/j.solener.2023.05.057
[26] Dhaidan, N.S., Khalaf, A.F. and Khodadadi, J.M. (2021) Numerical and Experimental Investigation of Melting of Paraffin in a Hemicylindrical Capsule. Journal of Thermal Science and Engineering Applications, 13, Article 051008.
https://doi.org/10.1115/1.4049873
[27] Adine, H.A. and El Qarnia, H. (2009) Numerical Analysis of the Thermal Behaviour of a Shell-and-Tube Heat Storage Unit Using Phase Change Materials. Applied Mathematical Modelling, 33, 2132-2144.
https://doi.org/10.1016/j.apm.2008.05.016
[28] Mostafavi, A. and Jain, A. (2022) Thermal Management Effectiveness and Efficiency of a Fin Surrounded by a Phase Change Material (PCM). International Journal of Heat and Mass Transfer, 191, Article 122630.
https://doi.org/10.1016/j.ijheatmasstransfer.2022.122630
[29] Shank, K. and Tiari, S. (2023) A Review on Active Heat Transfer Enhancement Techniques within Latent Heat Thermal Energy Storage Systems. Energies, 16, Article 4165.
https://doi.org/10.3390/en16104165
[30] Tiari, S., Hockins, A. and Shank, K. (2022) Experimental Study of a Latent Heat Thermal Energy Storage System Assisted by Varying Annular Fins. Journal of Energy Storage, 55, Article 105603.
https://doi.org/10.1016/j.est.2022.105603
[31] Shank, K., Bernat, J., Regal, E., Leise, J., Ji, X. and Tiari, S. (2022) Experimental Study of Varying Heat Transfer Fluid Parameters within a Latent Heat Thermal Energy Storage System Enhanced by Fins. Sustainability, 14, Article 8920.
https://doi.org/10.3390/su14148920
[32] Kalapala, L. and Devanuri, J.K. (2018) Influence of Operational and Design Parameters on the Performance of a PCM Based Heat Exchanger for Thermal Energy Storage—A Review. Journal of Energy Storage, 20, 497-519.
https://doi.org/10.1016/j.est.2018.10.024
[33] Sanchouli, M., Payan, S., Payan, A. and Nada, S.A. (2022) Investigation of the Enhancing Thermal Performance of Phase Change Material in a Double-Tube Heat Exchanger Using Grid Annular Fins. Case Studies in Thermal Engineering, 34, Article 101986.
https://doi.org/10.1016/j.csite.2022.101986
[34] Tiari, S. and Hockins, A. (2021) An Experimental Study on the Effect of Annular and Radial Fins on Thermal Performance of a Latent Heat Thermal Energy Storage Unit. Journal of Energy Storage, 44, Article 103541.
https://doi.org/10.1016/j.est.2021.103541
[35] Liu, Y.K. and Tao, Y.B. (2022) Experimental and Numerical Investigation of Longitudinal and Annular Finned Latent Heat Thermal Energy Storage Unit. Solar Energy, 243, 410-420.
https://doi.org/10.1016/j.solener.2022.08.023
[36] Dhaidan, N.S., Hassan, A.F., Rasheed Al-Gaheeshi, A.M., Al-Mousawi, F.N. and Homod, R.Z. (2023) Experimental Investigation of Thermal Characteristics of Phase Change Material in Finned Heat Exchangers. Journal of Energy Storage, 71, Article 108162.
https://doi.org/10.1016/j.est.2023.108162
[37] Agyenim, F. (2016) The Use of Enhanced Heat Transfer Phase Change Materials (PCM) to Improve the Coefficient of Performance (COP) of Solar Powered LiBr/H2O Absorption Cooling Systems. Renewable Energy, 87, 229-239.
https://doi.org/10.1016/j.renene.2015.10.012
[38] Sciacovelli, A., Gagliardi, F. and Verda, V. (2015) Maximization of Performance of a PCM Latent Heat Storage System with Innovative Fins. Applied Energy, 137, 707-715.
https://doi.org/10.1016/j.apenergy.2014.07.015
[39] Al-Mudhafar, A.H.N., Nowakowski, A.F. and Nicolleau, F.C.G.A. (2021) Enhancing the Thermal Performance of PCM in a Shell and Tube Latent Heat Energy Storage System by Utilizing Innovative Fins. Energy Reports, 7, 120-126.
https://doi.org/10.1016/j.egyr.2021.02.034
[40] Xu, Y., Wang, J. and Li, T. (2022) Experimental Study on the Heat Transfer Performance of a Phase Change Material Based Pin-Fin Heat Sink for Heat Dissipation in Airborne Equipment under Hypergravity. Journal of Energy Storage, 52, Article 104742.
https://doi.org/10.1016/j.est.2022.104742
[41] Jaworski, M. (2012) Thermal Performance of Heat Spreader for Electronics Cooling with Incorporated Phase Change Material. Applied Thermal Engineering, 35, 212-219.
https://doi.org/10.1016/j.applthermaleng.2011.10.036
[42] Kateshia, J. and Lakhera, V.J. (2021) Analysis of Solar Still Integrated with Phase Change Material and Pin Fins as Absorbing Material. Journal of Energy Storage, 35, Article 102292.
https://doi.org/10.1016/j.est.2021.102292
[43] Sharma, A., Kothari, R. and Sahu, S.K. (2022) Effect of Fin Location on Constrained Melting Heat Transfer of Phase Change Material in a Spherical Capsule: A Numerical Study. Journal of Energy Storage, 52, Article 104922.
https://doi.org/10.1016/j.est.2022.104922
[44] Wu, J., Chen, Q., Zhang, Y. and Sun, K. (2021) Phase Change Material Heat Transfer Enhancement in Latent Heat Thermal Energy Storage Unit with Single Fin: Comprehensive Effect of Position and Length. Journal of Energy Storage, 42, Article 103101.
https://doi.org/10.1016/j.est.2021.103101
[45] Tamraparni, A., Shamberger, P.J. and Felts, J.R. (2020) Cyclic Stability of Lithium Nitrate Trihydrate in Plate Fin Heat Exchangers. Applied Thermal Engineering, 179, Article 115476.
https://doi.org/10.1016/j.applthermaleng.2020.115476
[46] Momeni, M., Askar, S. and Fartaj, A. (2023) Thermal Performance Evaluation of a Compact Two-Fluid Finned Heat Exchanger Integrated with Cold Latent Heat Energy Storage. Applied Thermal Engineering, 230, Article 120815.
https://doi.org/10.1016/j.applthermaleng.2023.120815
[47] Wang, C., Feng, L., Li, W., Zheng, J., Tian, W. and Li, X. (2012) Shape-Stabilized Phase Change Materials Based on Polyethylene Glycol/Porous Carbon Composite: The Influence of the Pore Structure of the Carbon Materials. Solar Energy Materials and Solar Cells, 105, 21-26.
https://doi.org/10.1016/j.solmat.2012.05.031
[48] Meng, Z.N. and Zhang, P. (2017) Experimental and Numerical Investigation of a Tube-in-Tank Latent Thermal Energy Storage Unit Using Composite PCM. Applied Energy, 190, 524-539.
https://doi.org/10.1016/j.apenergy.2016.12.163
[49] Huang, X., Alva, G., Liu, L. and Fang, G. (2017) Microstructure and Thermal Properties of Cetyl Alcohol/high Density Polyethylene Composite Phase Change Materials with Carbon Fiber as Shape-Stabilized Thermal Storage Materials. Applied Energy, 200, 19-27.
https://doi.org/10.1016/j.apenergy.2017.05.074
[50] Li, M., Guo, Q. and Chen, Q. (2019) Thermal Conductivity Improvement of Heat-Storage Composite Filled with Milling Modified Carbon Nanotubes. International Journal of Green Energy, 16, 1617-1623.
https://doi.org/10.1080/15435075.2019.1681426
[51] Zhang, P., Wang, Y., Qiu, Y., Yan, H., Wang, Z. and Li, Q. (2024) Novel Composite Phase Change Materials Supported by Oriented Carbon Fibers for Solar Thermal Energy Conversion and Storage. Applied Energy, 358, Article 122546.
https://doi.org/10.1016/j.apenergy.2023.122546
[52] Ye, F., Ge, Z., Ding, Y. and Yang, J. (2014) Multi-Walled Carbon Nanotubes Added to Na2CO3/MgO Composites for Thermal Energy Storage. Particuology, 15, 56-60.
https://doi.org/10.1016/j.partic.2013.05.001
[53] Tao, Y.B., Lin, C.H. and He, Y.L. (2015) Preparation and Thermal Properties Characterization of Carbonate Salt/Carbon Nanomaterial Composite Phase Change Material. Energy Conversion and Management, 97, 103-110.
https://doi.org/10.1016/j.enconman.2015.03.051
[54] Warzoha, R.J. and Fleischer, A.S. (2015) Effect of Carbon Nanotube Interfacial Geometry on Thermal Transport in Solid–liquid Phase Change Materials. Applied Energy, 154, 271-276.
https://doi.org/10.1016/j.apenergy.2015.04.121
[55] Wang, J.F., Xie, H.Q., Xin, Z. and Li, Y. (2010) Experimental Study on Palmitic Acid Composites Containing Carbon Nanotubes by Acid Treatment. Journal of Engineering Thermophysics, 31, 1389-1391.
[56] Tian, B., Yang, W., Luo, L., Wang, J., Zhang, K., Fan, J., et al. (2016) Synergistic Enhancement of Thermal Conductivity for Expanded Graphite and Carbon Fiber in Paraffin/EVA Form-Stable Phase Change Materials. Solar Energy, 127, 48-55.
https://doi.org/10.1016/j.solener.2016.01.011
[57] Fu, Y., He, Z., Mo, D. and Lu, S. (2014) Thermal Conductivity Enhancement of Epoxy Adhesive Using Graphene Sheets as Additives. International Journal of Thermal Sciences, 86, 276-283.
https://doi.org/10.1016/j.ijthermalsci.2014.07.011
[58] Mehrali, M., Latibari, S.T., Mehrali, M., Indra Mahlia, T.M., Cornelis Metselaar, H.S., Naghavi, M.S., et al. (2013) Preparation and Characterization of Palmitic Acid/Graphene Nanoplatelets Composite with Remarkable Thermal Conductivity as a Novel Shape-Stabilized Phase Change Material. Applied Thermal Engineering, 61, 633-640.
https://doi.org/10.1016/j.applthermaleng.2013.08.035
[59] Zhu, H., Gu, M., Dai, X., Feng, S., Yang, T., Fan, Y., et al. (2024) Mechanically Strong, Healable, and Recyclable Supramolecular Solid-Solid Phase Change Materials with High Thermal Conductivity for Thermal Energy Storage. Chemical Engineering Journal, 494, Article 153235.
https://doi.org/10.1016/j.cej.2024.153235
[60] Cai, W., Yang, W., Jiang, Z., He, F., Zhang, K., He, R., et al. (2019) Numerical and Experimental Study of Paraffin/Expanded Graphite Phase Change Materials with an Anisotropic Model. Solar Energy Materials and Solar Cells, 194, 111-120.
https://doi.org/10.1016/j.solmat.2019.02.006
[61] Zhang, Y., Li, W., Huang, J., Cao, M. and Du, G. (2020) Expanded Graphite/Paraffin/Silicone Rubber as High Temperature Form-Stabilized Phase Change Materials for Thermal Energy Storage and Thermal Interface Materials. Materials, 13, Article 894.
https://doi.org/10.3390/ma13040894
[62] Cai, Z., Liu, J., Zhou, Y., Dai, L., Wang, H., Liao, C., et al. (2021) Flexible Phase Change Materials with Enhanced Tensile Strength, Thermal Conductivity and Photo-Thermal Performance. Solar Energy Materials and Solar Cells, 219, Article 110728.
https://doi.org/10.1016/j.solmat.2020.110728
[63] Xu, T., Chen, Q., Huang, G., Zhang, Z., Gao, X. and Lu, S. (2016) Preparation and Thermal Energy Storage Properties of D-Mannitol/Expanded Graphite Composite Phase Change Material. Solar Energy Materials and Solar Cells, 155, 141-146.
https://doi.org/10.1016/j.solmat.2016.06.003
[64] Rathore, P.K.S. and Shukla, S.K. (2021) Improvement in Thermal Properties of PCM/Expanded Vermiculite/Expanded Graphite Shape Stabilized Composite PCM for Building Energy Applications. Renewable Energy, 176, 295-304.
https://doi.org/10.1016/j.renene.2021.05.068
[65] Jiang, Z., Ouyang, T., Yang, Y., Chen, L., Fan, X., Chen, Y., et al. (2018) Thermal Conductivity Enhancement of Phase Change Materials with Form-Stable Carbon Bonded Carbon Fiber Network. Materials & Design, 143, 177-184.
https://doi.org/10.1016/j.matdes.2018.01.052
[66] Al Ghossein, R.M., Hossain, M.S. and Khodadadi, J.M. (2017) Experimental Determination of Temperature-Dependent Thermal Conductivity of Solid Eicosane-Based Silver Nanostructure-Enhanced Phase Change Materials for Thermal Energy Storage. International Journal of Heat and Mass Transfer, 107, 697-711.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.059
[67] Ma, C., Zhang, Y., Chen, X., Song, X. and Tang, K. (2020) Experimental Study of an Enhanced Phase Change Material of Paraffin/Expanded Graphite/Nano-Metal Particles for a Personal Cooling System. Materials, 13, Article 980.
https://doi.org/10.3390/ma13040980
[68] Zheng, R., Zhou, H., Li, C. and Li, J. (2024) Synergistic Phase Change and Heat Conduction of Low Melting-Point Alloy Microparticle Additives in Expanded Graphite Shape-Stabilized Organic Phase Change Materials. Chemical Engineering Journal, 482, Article 149009.
https://doi.org/10.1016/j.cej.2024.149009
[69] Şahan, N., Fois, M. and Paksoy, H. (2015) Improving Thermal Conductivity Phase Change Materials—A Study of Paraffin Nanomagnetite Composites. Solar Energy Materials and Solar Cells, 137, 61-67.
https://doi.org/10.1016/j.solmat.2015.01.027
[70] Babapoor, A. and Karimi, G. (2015) Thermal Properties Measurement and Heat Storage Analysis of Paraffinnanoparticles Composites Phase Change Material: Comparison and Optimization. Applied Thermal Engineering, 90, 945-951.
https://doi.org/10.1016/j.applthermaleng.2015.07.083
[71] Huang, Q., Wang, S., He, J., Xu, D., Abdou, S.N., Ibrahim, M.M., et al. (2024) Experimental Design of Paraffin/Methylated Melamine-Formaldehyde Microencapsulated Composite Phase Change Material and the Application in Battery Thermal Management System. Journal of Materials Science & Technology, 169, 124-136.
https://doi.org/10.1016/j.jmst.2023.06.018
[72] Chen, J., Yang, D., Jiang, J., Ma, A. and Song, D. (2014) Research Progress of Phase Change Materials (PCMs) Embedded with Metal Foam (a Review). Procedia Materials Science, 4, 389-394.
https://doi.org/10.1016/j.mspro.2014.07.579
[73] Xiao, X., Zhang, P. and Li, M. (2013) Preparation and Thermal Characterization of Paraffin/metal Foam Composite Phase Change Material. Applied Energy, 112, 1357-1366.
https://doi.org/10.1016/j.apenergy.2013.04.050
[74] Xiao, X., Zhang, P. and Li, M. (2014) Effective Thermal Conductivity of Open-Cell Metal Foams Impregnated with Pure Paraffin for Latent Heat Storage. International Journal of Thermal Sciences, 81, 94-105.
https://doi.org/10.1016/j.ijthermalsci.2014.03.006
[75] Deng, Y., Li, J., Qian, T., Guan, W., Li, Y. and Yin, X. (2016) Thermal Conductivity Enhancement of Polyethylene Glycol/expanded Vermiculite Shape-Stabilized Composite Phase Change Materials with Silver Nanowire for Thermal Energy Storage. Chemical Engineering Journal, 295, 427-435.
https://doi.org/10.1016/j.cej.2016.03.068
[76] Reyes, A., Henríquez-Vargas, L., Rivera, J. and Sepúlveda, F. (2017) Theoretical and Experimental Study of Aluminum Foils and Paraffin Wax Mixtures as Thermal Energy Storage Material. Renewable Energy, 101, 225-235.
https://doi.org/10.1016/j.renene.2016.08.057
[77] Li, W., Wang, Y. and Kong, C. (2015) Experimental Study on Melting/Solidification and Thermal Conductivity Enhancement of Phase Change Material Inside a Sphere. International Communications in Heat and Mass Transfer, 68, 276-282.
https://doi.org/10.1016/j.icheatmasstransfer.2015.09.004
[78] Su, D., Jia, Y., Alva, G., Tang, F. and Fang, G. (2016) Preparation and Thermal Properties of N-Octadecane/Stearic Acid Eutectic Mixtures with Hexagonal Boron Nitride as Phase Change Materials for Thermal Energy Storage. Energy and Buildings, 131, 35-41.
https://doi.org/10.1016/j.enbuild.2016.09.022
[79] Fang, X., Fan, L., Ding, Q., Yao, X., Wu, Y., Hou, J., et al. (2014) Thermal Energy Storage Performance of Paraffin-Based Composite Phase Change Materials Filled with Hexagonal Boron Nitride Nanosheets. Energy Conversion and Management, 80, 103-109.
https://doi.org/10.1016/j.enconman.2014.01.016
[80] Motahar, S., Nikkam, N., Alemrajabi, A.A., Khodabandeh, R., Toprak, M.S. and Muhammed, M. (2014) A Novel Phase Change Material Containing Mesoporous Silica Nanoparticles for Thermal Storage: A Study on Thermal Conductivity and Viscosity. International Communications in Heat and Mass Transfer, 56, 114-120.
https://doi.org/10.1016/j.icheatmasstransfer.2014.06.005

Baidu
map