[1] |
Lu, D., Lei, X., Weng, S., Li, R., Li, J., Lv, L., et al. (2022) A Self-Purifying Electrolyte Enables High Energy Li Ion Batteries. Energy & Environmental Science, 15, 3331-3342. https://doi.org/10.1039/d2ee00483f |
[2] |
Huang, Y., Li, R., Weng, S., Zhang, H., Zhu, C., Lu, D., et al. (2022) Eco-Friendly Electrolytes via a Robust Bond Design for High-Energy Li Metal Batteries. Energy & Environmental Science, 15, 4349-4361. https://doi.org/10.1039/d2ee01756c |
[3] |
Zhao, H., Liang, K., Wang, S., Ding, Z., Huang, X., Chen, W., et al. (2023) RETRACTED: A Stress Self‐Adaptive Silicon/Carbon “Ordered Structures” to Suppress the Electro‐Chemo-Mechanical Failure: Piezo‐Electrochemistry and Piezo‐Ionic Dynamics. Advanced Science, 10, Article ID: 2303696. https://doi.org/10.1002/advs.202303696 |
[4] |
Masias, A., Marcicki, J. and Paxton, W.A. (2021) Opportunities and Challenges of Lithium Ion Batteries in Automotive Applications. ACS Energy Letters, 6, 621-630. https://doi.org/10.1021/acsenergylett.0c02584 |
[5] |
Nandan, R., Takamori, N., Higashimine, K., Badam, R. and Matsumi, N. (2022) Zinc Blende Inspired Rational Design of a Β-Sic Based Resilient Anode Material for Lithium-Ion Batteries. Journal of Materials Chemistry A, 10, 5230-5243. https://doi.org/10.1039/d1ta08516f |
[6] |
Chen, Z., Soltani, A., Chen, Y., Zhang, Q., Davoodi, A., Hosseinpour, S., et al. (2022) Emerging Organic Surface Chemistry for Si Anodes in Lithium‐Ion Batteries: Advances, Prospects, and Beyond. Advanced Energy Materials, 12, Article ID: 2200924. https://doi.org/10.1002/aenm.202200924 |
[7] |
Tan, W., Yang, F., Yi, T., Liu, G., Wei, X., Long, Q., et al. (2022) Fullerene-Like Elastic Carbon Coatings on Silicon Nanoparticles by Solvent Controlled Association of Natural Polyaromatic Molecules as High-Performance Lithium-Ion Battery Anodes. Energy Storage Materials, 45, 412-421. https://doi.org/10.1016/j.ensm.2021.11.040 |
[8] |
Wang, S., Wu, Q., Cai, Z., Ma, Z., Ahsan, Z., Li, Y., et al. (2023) Dual-Phase Sic + C Coated Microsize Si@SiOx Powder as Anode Material for Li-Ion Batteries. ACS Applied Energy Materials, 6, 9788-9797. https://doi.org/10.1021/acsaem.3c01998 |
[9] |
Cheng, Z., Jiang, H., Zhang, X., Cheng, F., Wu, M. and Zhang, H. (2023) Fundamental Understanding and Facing Challenges in Structural Design of Porous Si‐Based Anodes for Lithium‐ion Batteries. Advanced Functional Materials, 33, Article ID: 2301109. https://doi.org/10.1002/adfm.202301109 |
[10] |
Man, Q., An, Y., Liu, C., Shen, H., Xiong, S. and Feng, J. (2023) Interfacial Design of Silicon/Carbon Anodes for Rechargeable Batteries: A Review. Journal of Energy Chemistry, 76, 576-600. https://doi.org/10.1016/j.jechem.2022.09.020 |
[11] |
Saddique, J., Wu, M., Ali, W., Xu, X., Jiang, Z., Tong, L., et al. (2024) Opportunities and Challenges of Nano Si/C Composites in Lithium Ion Battery: A Mini Review. Journal of Alloys and Compounds, 978, Article ID: 173507. https://doi.org/10.1016/j.jallcom.2024.173507 |
[12] |
Bi, J., Du, Z., Sun, J., Liu, Y., Wang, K., Du, H., et al. (2023) On the Road to the Frontiers of Lithium‐Ion Batteries: A Review and Outlook of Graphene Anodes. Advanced Materials, 35, Article ID: 2210734. https://doi.org/10.1002/adma.202210734 |
[13] |
Yu, S., Guo, B., Zeng, T., Qu, H., Yang, J. and Bai, J. (2022) Graphene-Based Lithium-Ion Battery Anode Materials Manufactured by Mechanochemical Ball Milling Process: A Review and Perspective. Composites Part B: Engineering, 246, Article ID: 110232. https://doi.org/10.1016/j.compositesb.2022.110232 |
[14] |
Ruan, H., Zhang, L., Li, S., Li, L., Huang, Y., Gao, S., et al. (2022) Spatially Confined Silicon Nanoparticles Anchored in Porous Carbon as Lithium-Ion-Battery Anode Materials. ACS Applied Nano Materials, 5, 13542-13552. https://doi.org/10.1021/acsanm.2c03196 |
[15] |
Lee, B.S., Oh, S., Choi, Y.J., Yi, M., Kim, S.H., Kim, S., et al. (2023) Sio-Induced Thermal Instability and Interplay between Graphite and Sio in Graphite/SiO Composite Anode. Nature Communications, 14, Article No. 150. https://doi.org/10.1038/s41467-022-35769-2 |
[16] |
Xie, G., Tan, X., Shi, Z., Peng, Y., Ma, Y., Zhong, Y., Wang, F., He, J., Zhu, Z., Cheng, X.-B., Wang, G., Wang, T. and Wu, Y. (2025) SiOx Based Anodes for Advanced Li-Ion Batteries: Recent Progress and Perspectives. Advanced Functional Materials, 35, Article ID: 2414714. |
[17] |
Cui, Y. (2021) Silicon Anodes. Nature Energy, 6, 995-996. https://doi.org/10.1038/s41560-021-00918-2 |
[18] |
Bitew, Z., Tesemma, M., Beyene, Y. and Amare, M. (2022) Nano-Structured Silicon and Silicon Based Composites as Anode Materials for Lithium Ion Batteries: Recent Progress and Perspectives. Sustainable Energy & Fuels, 6, 1014-1050. https://doi.org/10.1039/d1se01494c |
[19] |
Yan, Z., Jiang, J., Zhang, Y., Yang, D. and Du, N. (2022) Scalable and Low-Cost Synthesis of Porous Silicon Nanoparticles as High-Performance Lithium-Ion Battery Anode. Materials Today Nano, 18, Article ID: 100175. https://doi.org/10.1016/j.mtnano.2022.100175 |
[20] |
Zhang, R., Yu, P., Li, Z., Shen, X., Yu, Y. and Yu, J. (2025) Hierarchical Porous Structured Si/C Anode Material for Lithium-Ion Batteries by Dual Encapsulating Layers for Enhanced Lithium-Ion and Electron Transports Rates. Small, 21, e2407276. |
[21] |
An, W., He, P., Che, Z., Xiao, C., Guo, E., Pang, C., et al. (2022) Scalable Synthesis of Pore-Rich Si/C@C Core-Shell-Structured Microspheres for Practical Long-Life Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 14, 10308-10318. https://doi.org/10.1021/acsami.1c22656 |
[22] |
Liu, N., Liu, J., Jia, D., Huang, Y., Luo, J., Mamat, X., et al. (2019) Multi-Core Yolk-Shell Like Mesoporous Double Carbon-Coated Silicon Nanoparticles as Anode Materials for Lithium-Ion Batteries. Energy Storage Materials, 18, 165-173. https://doi.org/10.1016/j.ensm.2018.09.019 |
[23] |
Chen, J., Wang, S., Hou, Y., Wang, H., Zhang, B., Wen, W., et al. (2024) CNTs and rGO Synergistically Enhance the Cycling Stability of Yolk-Shell Silicon Anodes for Efficient Lithium Storage. International Journal of Hydrogen Energy, 55, 414-421. https://doi.org/10.1016/j.ijhydene.2023.11.268 |
[24] |
Gao, J., Zuo, S., Liu, H., Jiang, Q., Wang, C., Yin, H., et al. (2022) An Interconnected and Scalable Hollow Si-C Nanospheres/Graphite Composite for High-Performance Lithium-Ion Batteries. Journal of Colloid and Interface Science, 624, 555-563. https://doi.org/10.1016/j.jcis.2022.05.135 |
[25] |
Chen, J., Guo, X., Gao, M., Wang, J., Sun, S., Xue, K., et al. (2021) Self-Supporting Dual-Confined Porous Si@c-Zif@carbon Nanofibers for High-Performance Lithium-Ion Batteries. Chemical Communications, 57, 10580-10583. https://doi.org/10.1039/d1cc04172j |
[26] |
Chen, J., Wang, S., Hou, Y., Wen, W., Wang, H., Zhang, B., et al. (2023) ZIFs Derived Multilayer Carbon and CNT Skeleton Networks and Graphene to Encapsulate Silicon Nanoparticles for Efficient Lithium Storage. Journal of Energy Storage, 74, Article ID: 109356. https://doi.org/10.1016/j.est.2023.109356 |
[27] |
Li, P., Kim, H., Myung, S. and Sun, Y. (2021) Diverting Exploration of Silicon Anode into Practical Way: A Review Focused on Silicon-Graphite Composite for Lithium Ion Batteries. Energy Storage Materials, 35, 550-576. https://doi.org/10.1016/j.ensm.2020.11.028 |
[28] |
Kwon, H.J., Hwang, J., Shin, H., Jeong, M., Chung, K.Y., Sun, Y., et al. (2019) Nano/Microstructured Silicon-Carbon Hybrid Composite Particles Fabricated with Corn Starch Biowaste as Anode Materials for Li-Ion Batteries. Nano Letters, 20, 625-635. https://doi.org/10.1021/acs.nanolett.9b04395 |
[29] |
Wang, D., Zhou, C., Cao, B., Xu, Y., Zhang, D., Li, A., et al. (2020) One-Step Synthesis of Spherical Si/C Composites with Onion-Like Buffer Structure as High-Performance Anodes for Lithium-Ion Batteries. Energy Storage Materials, 24, 312-318. https://doi.org/10.1016/j.ensm.2019.07.045 |
[30] |
Pivarníková, I., Flügel, M., Paul, N., Cannavo, A., Ceccio, G., Vacík, J., et al. (2024) Observation of Preferential Sputtering of Si/Graphite Anodes from Li-Ion Cells by GD-OES and Its Validation by Neutron Depth Profiling. Journal of Power Sources, 594, Article ID: 233972. https://doi.org/10.1016/j.jpowsour.2023.233972 |
[31] |
Zhao, W., Zhao, C., Wu, H., Li, L. and Zhang, C. (2024) Progress, Challenge and Perspective of Graphite-Based Anode Materials for Lithium Batteries: A Review. Journal of Energy Storage, 81, Article ID: 110409. https://doi.org/10.1016/j.est.2023.110409 |
[32] |
Han, M., Mu, Y., Wei, L., Zeng, L., Zhao, T. (2023) Multilevel Carbon Architecture of Subnanoscopic Silicon for Fast-Charging High-Energy-Density Lithium-Ion Batteries. Carbon Energy, 6, e377. |
[33] |
Wong, Y.J., Zhu, L., Teo, W.S., Tan, Y.W., Yang, Y., Wang, C., et al. (2011) Revisiting the Stöber Method: Inhomogeneity in Silica Shells. Journal of the American Chemical Society, 133, 11422-11425. https://doi.org/10.1021/ja203316q |
[34] |
Jiang, Y., Wang, H., Li, B., Zhang, Y., Xie, C., Zhang, J., et al. (2016) Interfacial Engineering of Si/Multi-Walled Carbon Nanotube Nanocomposites Towards Enhanced Lithium Storage Performance. Carbon, 107, 600-606. https://doi.org/10.1016/j.carbon.2016.06.068 |