2型糖尿病合并代谢相关脂肪性肝病患者的TG/HDL-C与肝脏脂肪变相关性研究
Study on the Correlation of TG/HDL-C with Hepatic Steatosis in Patients with Type 2 Diabetes Mellitus Combined with Metabolism-Related Fatty Liver Disease
DOI: 10.12677/acm.2025.152539, PDF, HTML, XML,   
作者: 崔亚迪:河北医科大学研究生学院,河北 石家庄;张冬雨:徐州医科大学研究生学院,江苏 徐州;吴 韬*:石家庄市人民医院内分泌科,河北 石家庄
关键词: 2型糖尿病代谢相关脂肪性肝病TG/HDL-CType 2 Diabetes Mellitus Metabolism-Related Fatty Liver Disease TG/HDL-C
摘要: 目的:探究2型糖尿病(T2DM)合并代谢相关脂肪性肝病(MAFLD)患者的TG/HDL-C与肝脏脂肪变相关性。方法:选取2023年9月至2024年8月于石家庄市人民医院内分泌科住院接受治疗27~75岁T2DM合并MAFLD患者共186例。根据代表肝脏脂肪变性的严重程度的受控衰减参数(CAP)水平(S0: CAP < 238 dB/m, S1: 238 dB/m ≤ CAP < 260 dB/m, S2: 260 dB/m ≤ CAP < 292 dB/m, S3: CAP ≥ 292 dB/m)将患者分为非重度肝脏脂肪变组80例和重度肝脏脂肪变组106例,所有受试者均测量甘油三酯(TG)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、TG/HDL-C、谷丙转氨酶(ALT)、谷草转氨酶(AST)、体质量指数(BMI)、瞬时弹性成像参数CAP值(dB/m)等指标。结果:(1) 重度脂肪变组BMI、FPG、FINS、FCP、HOMA-IR、HbA1c、TC、TG、LDL-C、ALT、AST、 γ-GGT、TG/HDL-C、CAP均高于非重度脂肪变组,差异均有统计学意义(P < 0.05)。(2) 对各指标行Pearson/Spearman相关性分析显示,CAP与FINS、FCP、HOMA-IR、TG、ALT、AST、 γ-GGT、BMI、TG/HDL-C等均呈正相关(r值分别为0.407、0.392、0.422、0.547、0.381、0.433、0.368、0.538、0.568)。(3) 行二元Logistic多因素回归分析得出:TG/HDL-C、LDL-C、BMI、ALT是T2DM合并MAFLD患者肝脏脂肪变的独立危险因素(TG/HDL-C 95%置信区间1.726 (1.238, 2.407),P = 0.001)。(4) 将TG/HDL-C、TG、LDL-C、ALT代入ROC曲线分析,曲线下面积分别为:0.753、0.747、0.609、0.695。其中TG/HDL-C敏感度54.7%,特异度86.3%,TG、TG/HDL-C均能预测T2DM合并MAFLD患者的重度肝脏脂肪变性,但TG/HDL-C预测价值更优(P = 0.000),具有统计学意义。
Abstract: Objective: To investigate the correlation between TG/HDL-C and hepatic steatosis in patients with type 2 diabetes mellitus (T2DM) combined with metabolism-associated fatty liver disease (MAFLD). Methods: A total of 186 patients with T2DM combined with MAFLD aged 27-75 years who were hospitalized in the Department of Endocrinology of Shijiazhuang People’s Hospital from September 2023 to August 2024 were selected. The patients were categorized into 80 cases in the non-severe hepatic steatosis group and 106 cases in the severe hepatic steatosis group according to the level of controlled attenuation parameter (CAP), which represents the severity of hepatic steatosis (S0: CAP < 238 dB/m, S1: 238 dB/m ≤ CAP < 260 dB/m, S2: 260 dB/m ≤ CAP < 292 dB/m, and S3: CAP ≥ 292 dB/m). The steatosis group consisted of 106 cases, and triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), TG/HDL-C, alanine aminotransferase (ALT), alanine transaminase (AST), body mass index (BMI), and CAP value of transient elastography parameter (dB/m) were measured in all the subjects. Results: (1) BMI, FPG, FINS, FCP, HOMA-IR, HbA1c, TC, TG, LDL-C, ALT, AST, γ-GGT, TG/HDL-C, and CAP were higher in the severe steatosis group than those in the non-severe steatosis group, and the differences were statistically significant (P < 0.05). (2) The correlation analyses of each index showed that the Pearson/Spearman correlation analysis showed that the BMI, body mass index (AST), transient elastography parameter CAP value (dB/m), and other indexes were higher. Spearman correlation analysis showed that CAP was positively correlated with FINS, FCP, HOMA-IR, TG, ALT, AST, γ-GGT, BMI, and TG/HDL-C (r-values of 0.407, 0.392, 0.422, 0.547, 0.381, 0.433, 0.368, 0.538, respectively, 0.568). (3) Binary logistic multifactorial regression analysis was performed to conclude that TG/HDL-C, LDL-C, BMI, and ALT were independent risk factors for hepatic steatosis in patients with T2DM combined with MAFLD (TG/HDL-C 95% confidence interval 1.726 (1.238, 2.407), P = 0.001). (4) Substituting TG/HDL-C, TG, LDL-C, and ALT into the ROC curve analysis, the areas under the curve were 0.753, 0.747, 0.609, and 0.695, respectively of which the sensitivity of TG/HDL-C was 54.7% and specificity 86.3%, both TG and TG/HDL-C could predict severe hepatic steatosis in patients with T2DM combined with MAFLD, but the predictive value of TG/HDL-C was superior (P = 0.000), which was statistically significant.
文章引用:崔亚迪, 张冬雨, 吴韬. 2型糖尿病合并代谢相关脂肪性肝病患者的TG/HDL-C与肝脏脂肪变相关性研究[J]. 临床医学进展, 2025, 15(2): 1799-1807. https://doi.org/10.12677/acm.2025.152539

1. 引言

近年来,我国随着物质水平的逐步提高,代谢相关性脂肪性肝病(Metabolically associated fatty liver disease, MAFLD)的发病率也呈现上升、低龄化趋势,严重威胁患者身心健康、生活质量[1]。MAFLD主要病理机制是在肝细胞内脂肪代谢过程发生紊乱,引起其在肝细胞内的过度蓄积诱发疾病。MAFLD可由简单肝脏脂肪变性发展为非酒精性脂肪性肝炎在迁延至不易逆转的纤维化和肝硬化,中途可能诱发为肝癌[2]。目前临床针对MAFLD还未发现确切治疗手段,若该疾病进展至肝硬化或肝癌阶段时,治疗将会变得更棘手。甘油三酯(TG)作为具有不溶于水特性的主要载体负责在细胞内、血浆中蓄积和转运脂肪酸,TG作为血脂成分之一,若长时间保持在高水平状态,会推动MAFLD的进展[3]。血浆脂蛋白中的高密度脂蛋白(HDL-C),可以作为脂质运载体参与胆固醇的逆向转运过程[4]。HDL-C具有抗动脉粥样硬化、抗氧化、血管内皮细胞保护等心血管保护作用[5] [6]。有研究表明,HDL-C水平对癌症的发病起负向调节作用[7]。TG /HDL-C比值是反映脂质代谢和肝功能损伤的重要生化指标。该指标不仅涵盖高脂血症的关键成分,还被发现可作为白种人、韩国人和中国人不同人群胰岛素抵抗(IR)的指标[8] [9]。IR是2型糖尿病(Type 2 diabetes mellitus, T2DM)关键病理机制,其常合并血脂异常,有文献研究了TG/HDL-C与T2DM的关系,表明过多TG和或低HDL-C水平可能通过炎症和β-细胞作用影响胰岛素信号和分泌[10]。近些年来国内外许多研究发现,TG/HDL-C比值作为一种新的血脂异常参数是MAFLD、T2DM的独立危险因素,可能作为MAFLD、T2DM不良结局预测指标存在[11] [12]。MAFLD与T2DM因具有共同病理机制IR而互相进展形成恶性闭环,但是国内在T2DM合并MAFLD人群中对TG/HDL-C与T2DM合并MAFLD的关系的研究很少。因此本研究将探讨TG/HDL-C应用于T2DM合并MAFLD中是否可以提升重度肝脏脂肪变临床诊断价值。

2. 资料和方法

2.1. 研究对象

本研究为回顾性研究,通过筛选2023年9月至2024年8月于石家庄市人民医院内分泌科住院接受治疗27~75岁T2DM合并MAFLD患者共186例,男性115例(62%),女性71例(38%)。平均年龄50 ± 11岁,入组的所有患者均签署知情同意书。依据CAP对肝脂肪变进行分类:S0:CAP < 238 dB/m;S1:238 dB/m ≤ CAP < 260 dB/m;S2:260 dB/m ≤ CAP < 292 dB/m;S3:CAP ≥ 292 dB/m,分为非重度肝脏脂肪变组(S0~S2),n = 80例,重度肝脏脂肪变组(S3),n = 106例。

2.2. 入组与排除标准

入组标准:(1) 年龄:27~75岁;对本研究知情同意者。(2) 依据2020版中国2型糖尿病防治指南诊断标准诊断的T2DM患者[13]。(3) MAFLD诊断标准符合2020国际专家共识[14]:在肝细胞脂肪变性的组织学(肝活检)、影像学及血液生物标志物证据基础条件下,同时合并以下3项条件之一:超重/肥胖、2型糖尿病、代谢功能障碍(规定存在至少两项代谢异常风险因素者为代谢功能障碍)。

排除标准:(1) 瞬时弹性成像检测不合格患者。(2) 超声/CT/MR提示合并直径 ≥ 3 cm的肝脏占位或合并肝硬化;已知肝硬化患者。(3) 排除合并大量腹水,肠胀气,胆汁淤积,水肿患者。(4) 排除酒精性脂肪肝患者,T2DM合并急性并发症患者,妊娠或哺乳期妇女,传染病,精神疾病,恶性肿瘤或其他晚期疾病等患者。(5) 排除其他已知病因的慢性肝脏疾病,如病毒、药物、血色病、淀粉样变、全胃肠外营养、吸烟、饮酒(乙醇量男性 > 140 g/周,女性 > 70 g/周) [15]以及自身免疫性所致肝病。(6) 排除甲状腺疾病(如甲状腺功能亢进、减退者)以及既往长期、目前正在使用影响内分泌代谢指标及体内激素、血脂水平药物的患者,除外近期从事高强度体育训练,暴饮暴食,断食行为等影响肝脏脂肪代谢因素。

2.3. 方法

2.3.1. 一般临床测定

采集两组所有受试者性别、年龄、糖尿病病程等基本信息。所有入组患者需要隔夜禁食10小时,次日清晨空腹、平静状态下采集静脉血,检测各项指标。测定总胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、谷丙转氨酶(ALT)、谷草转氨酶(AST)、总胆红素(TBIL)、直接胆红素(DBIL)、γ-谷氨酰转移酶(γ-GGT)、空腹血糖(FPG)、空腹C肽(FCP)、空腹胰岛素(FINS)、糖化血红蛋白(HbA1C)、体质量指数(BMI);并计算TG/HDL-C值;胰岛素抵抗指数计算公式:(HOMA-IR) = FPG × FINS/22.5。

2.3.2. 受控衰减参数测定

应用FibroTouch无创肝纤维化诊断系统进行检查对患者进行检测,测定数次,获取有效测量值中位数,得出CAP (dB/m)。

2.4. 统计学方法

采用SPSS 26.0软件进行统计学分析。计量资料经Shapiro-Wilk正态性检验,以x ± s表示符合正态分布的计量资料,用中位数(M)及四分位间距(P25, P75)表示非正态分布计量资料。计数资料用卡方检验,计量资料用t检验、秩和检验进行组间差异性分析。采用Pearson/Spearman相关分析研究糖脂代谢指标与CAP相关性。采用二元Logistic回归方法研究肝脏脂肪变独立危险因素,采用受试者工作特征(ROC曲线)评估糖脂代谢指标对重度肝脏脂肪变诊断效能。以P < 0.05为差异有统计学意义。

3. 结果

3.1. 两组临床资料比较

采用独立样本t检验/秩和检验,分析两组临床指标差异得出结果:重度脂肪变组体重、病程、BMI、FPG、FINS、FCP、HOMA-IR、HbA1c、TC、TG、LDL-C、ALT、AST、γ-GGT、TG/HDL-C、CAP均高于非重度脂肪变组,差异均有统计学意义(P < 0.05),其余指标均无统计学差异(见表1)。

Table 1. Comparison of clinical data between the two groups of patients

1. 两组患者临床资料比较

组别

非重度脂肪变

(n = 80例)

重度脂肪变

(n = 106例)

t/z/X2

P值

性别(男/女)

49/31

66/40

0.020

0.888

年龄(岁)

53 (42, 59)

47 (40, 58)

1.917

0.055

身高(cm)

170.25 (162.00, 175.00)

170.75 (159.89, 177.00)

0.446

0.656

体重(kg)

75.89 ± 13.50

86.65 ± 16.58

4.740

0.000

病程(月)

72 (24, 141)

30 (6, 84)

3.770

0.000

高血压,有(%)

40 (50.0%)

51 (48.1%)

0.065

0.779

吸烟,有(%)

16 (20.0%)

30 (28.3%)

1.688

0.194

饮酒,有(%)

18 (22.5%)

19 (17.9%)

0.599

0.439

家族史,有(%)

8 (10.0%)

5 (4.7%)

1.957

0.162

FPG (mmol/L)

8.80 (6.60, 11.28)

10.45 (7.50, 13.15)

2.841

0.005

FINS (μU/mL)

8.69 (5.85, 14.13)

15.85 (9.09, 21.58)

4.452

0.000

FCP (nmol/L)

0.77 (0.60, 1.05)

1.12 (0.80, 1.34)

4.354

0.000

HOMA-IR

3.60 (2.14, 6.14)

6.66 (4.39, 11.12)

5.111

0.000

HbA1c (%)

8.55 (7.33, 10.30)

9.75 (7.70, 10.93)

2.178

0.028

TC (mmol/L)

4.77 ± 1.09

5.22 ± 1.31

2.462

0.015

TG (mmol/L)

1.50 (1.04, 2.17)

2.69 (1.57, 4.38)

5.765

0.000

HDL-C (mmol/L)

1.16 (1.01, 1.30)

1.07 (0.92, 1.24)

1.948

0.051

LDL-C (mmol/L)

3.13 ± 0.81

3.47 ± 0.91

2.614

0.010

ALT (U/L)

24.00 (14.00, 34.75)

36.00 (21.75, 70.25)

4.561

0.000

AST (U/L)

18.00 (14.13, 22.00)

24.50 (17.00, 41.00)

4.799

0.000

TBIL (μmol/L)

14.00 (10.90, 18.45)

13.95 (11.40, 18.73)

0.517

0.605

DBIL (μmol/L)

2.75 (2.13, 3.60)

2.80 (2.18, 3.60)

0.376

0.707

γ-GGT (U/L)

25.00 (17.25, 39.00)

38.00 (28.75, 68.50)

4.375

0.000

TG/HDL-C

1.30 (0.88, 1.93)

2.51 (1.54, 4.14)

5.909

0.000

BMI (kg/m2)

25.97 (23.79, 28.45)

29.31 (27.54, 32.13)

5.909

0.000

CAP (dB/m)

262.00 (244.25, 280.00)

327.50 (311.50, 342.25)

11.665

0.000

注:FPG为空腹血糖,FINS为空腹胰岛素,FCP为空腹C肽,HOMA-IR为胰岛素抵抗指,HbA1C为糖化血红蛋白,TC为总胆固醇,TG为甘油三酯,HDL-C为高密度脂蛋白胆固醇,LDL-C为低密度脂蛋白胆固醇,TBIL为总胆红素,DBIL为直接胆红素,γ-GGT为γ-谷氨酰转移酶,ALT为谷丙转氨酶,AST为谷草转氨酶,BMI为体质量指数,CAP为受控衰减参数,P < 0.05为差异有统计学意义。

3.2. CAP与各指标相关性分析

采用Pearson/Spearman相关分析研究各个指标与CAP相关性,CAP与体重、病程、FPG、FINS、FCP、HOMA-IR、TC、TG、LDL-C、ALT、AST、γ-GGT、BMI、TG/HDL-C、均呈正相关(r值分别为0.406、0.272、0.145、0.407、0.392、0.422、0.169、0.547、0.188、0.381、0.433、0.368、0.538、0.568),均有统计学意义(P < 0.05) (见表2)。

Table 2. Correlation between CAP and indicators

2. CAP与各指标相关性

变量

r值

P值

体重(kg)

0.406

0.000

病程(月)

0.272

0.000

FPG (mmol/L)

0.145

0.048

FINS (μU/mL)

0.407

0.000

FCP (nmol/L)

0.392

0.000

HOMA-IR

0.422

0.000

HbA1c (%)

0.041

0.575

TC (mmol/L)

0.169

0.021

TG (mmol/L)

0.547

0.000

LDL-C (mmol/L)

0.188

0.010

ALT (U/L)

0.381

0.000

AST (U/L)

0.433

0.000

γ-GGT (U/L)

0.368

0.000

BMI (kg/m2)

0.538

0.000

TG/HDL-C

0.568

0.010

注:BMI为体质量指数,FPG为空腹血糖,FINS为空腹胰岛素,FCP为空腹C肽,HOMA-IR为胰岛素抵抗指,HbA1C为糖化血红蛋白,TC为总胆固醇,TG为甘油三酯,LDL-C为低密度脂蛋白胆固醇,ALT为谷丙转氨酶,AST为谷草转氨酶,γ-GGT为γ-谷氨酰转移酶,P < 0.05为差异有统计学意义。

3.3. 二元Logistic回归分析

将以上与CAP相关自变量代入二元Logistic单因素回归除FINS外,余均成立,验证数据具有等方差性和残差正态性,将以上成立自变量代入二元Logistic多因素回归分析中得出:TG/HDL-C、LDL-C、BMI、ALT是T2DM合并MAFLD患者肝脏脂肪变的独立危险因素。以上均有统计学意义(P < 0.05) (见表3)。

Table 3. Binary Logistic multifactorial regression analysis of the degree of hepatic steatosis in patients with T2DM combined with MAFLD

3. T2DM合并MAFLD患者肝脏脂肪变程度的二元Logistic多因素回归分析

变量

β

标准误

Wald值

OR (95%CI)

P值

TG/HDL-C

0.546

0.170

10.367

1.726 (1.238, 2.407)

0.001

LDL-C (mmol/L)

1.236

0.532

5.400

3.441 (1.213, 9.756)

0.020

BMI (kg/m2)

0.201

0.062

10.442

1.223 (1.082, 1.381)

0.001

ALT (U/L)

0.028

0.012

5.932

1.028 (1.005, 1.052)

0.015

注:BMI为体质量指数,LDL-C为低密度脂蛋白胆固醇,ALT为谷丙转氨酶,P < 0.05为差异有统计学意义。

3.4. 预测重度肝脏脂肪变的ROC曲线

将TG/HDL-C、TG、LDL-C、ALT代入ROC曲线分析,曲线下面积分别为:TG/HDL-C (0.753),TG (0.747),LDL-C (0.609),ALT (0.695)。其中TG/HDL-C敏感度54.7%,特异度86.3%,TG、TG/HDL-C均能预测T2DM合并MAFLD患者的重度肝脏脂肪变性,但TG/HDL-C预测价值更优(P < 0.05)。具有统计学意义(P < 0.05) (见图1表4)。

Table 4. Area under the ROC curve for predicting severe hepatic steatosis

4. 预测重度肝脏脂肪变的ROC曲线下面积

变量

AUC (95%CI)

临界值

敏感度(%)

特异度(%)

约登指数

P值

TG/HDL-C

0.753 (0.685, 0.822)

2.23

54.7

86.3

0.410

0.000

TG (mmol/L)

0.747 (0.677, 0.817)

2.66

50.9

87.5

0.384

0.000

LDL-C (mmol/L)

0.609 (0.528, 0.690)

3.26

60.4

61.3

0.217

0.011

ALT (U/L)

0.695 (0.621, 0.770)

41.50

44.3

88.7

0.330

0.000

注:TG为甘油三酯,LDL-C为低密度脂蛋白胆固醇,ALT为谷丙转氨酶,P < 0.05为差异有统计学意义。

Figure 1. Ability of 4 indicators to predict the presence of severe liver fat

1. 4种指标预测是否为重度肝脏脂肪的能力

4. 讨论

研究表明ALT、LDL-C是T2DM合并MAFLD的独立危险因素,转氨酶是肝细胞受损的重要标志,ALT主要存在于肝脏细胞中,当不利因素导致肝功能损伤时,肝细胞就会遭到破坏产生水肿、变性甚至坏死等反应,同时ALT就会从细胞中进入到血液中,因此血液中的血清转氨酶水平会在短时间内快速升高;这可能提示随着肝脂肪变性程度的增加,肝细胞受损就可能越严重,从而促进MAFLD的进展[16]。血糖紊乱时周围脂肪快速分解并形成过量脂肪酸,致TG水平升高,后者可作为极低密度脂蛋白(VLDL)输出到血液中或储存在脂滴中,使LDL-C水平随之上升。本文得出TG/HDL-C是T2DM合并MAFLD的独立危险因素,也为预测T2DM合并MAFLD肝脏脂肪变提供了良好诊断价值。目前TG/HDL-C与MAFLD进展的具体机制尚不明确,可能与以下因素有关:第一,TG蓄积在肝脏,导致HDL-C减少。有研究表明,持续较高的TG是患心血管疾病高风险的重要标志[17],也是胰腺炎的高危险因素之一,严重的高甘油三酯血症可加重胰腺损伤,甚至坏死,导致休克及多脏器衰竭[18]。TG可通过游离脂肪酸(FFA)来合成。肝脏中的FFA大部分来自血浆中的非酯化脂肪酸,一部分来自新生脂肪生成,还有一小部分以乳糜微粒脂蛋白的形式存在[19]。脂肪酸的代谢可在细胞内发生氧化反应进行分解;还可在血浆中被富含TG的VLDL分解[20]。在正常情况下,肝脏内脂肪酸含量维持在较低水平,只储存少量的脂肪酸用于合成TG。FFA升高与能量过剩有密切关系,明显减缓细胞内脂肪分解速率,肝脏脂肪合成速率增加、最终肝脏内脂肪产生过多脂肪组织蓄积[19]。也可能因为FFA部分转化VLDL通过肝脏输出,VLDL的升高可负调控高密度脂蛋白胆固醇(HDL-C)。当营养过剩或肥胖时,肝脏内的FFA含量升高并产生蓄积,使细胞内代谢失常,导致TG在肝脏细胞内无法正常代谢分解,TG长时间维持在高水平条件下,从而诱发MAFLD的发生[3] [21]。此外,缺乏锻炼、不良生活作息等也会降低HDL-C的水平,这些都是T2DM合并MAFLD的危险因素[22]。第二,TG/HDL-C 可通过IR间接引起MAFLD进展。在实验研究中发现,IR促进了许多的富含TG的VLDL颗粒的分泌,降低HDL-C浓度[23],此外,当IR发生时,负向调节脂肪的分解,增加了新生脂肪含量[24]。当肝内TG的水平越高时,胰岛素对其靶器官的敏感性则越低[25]。当机体发生IR时,肝脏内的TG由于IR的作用,会在肝细胞内产生蓄积,而肝细胞内TG的聚集会使IR进一步加重,通过正反馈调节形成不良循环过程,从而加重T2DM、MAFLD。第三,脂联素作为脂肪组织分泌的关键脂肪因子,可使得血清中HDL-C不同程度升高,反之减少血清TG的存在,因此脂联素减少,可引起TG /HDL-C比值升高。关于MAFLD,低血清脂联素已被证明是其进展的预测因子。脂联素信号的减少通过单磷酸腺苷活化蛋白激酶的失活。减少线粒体生物起源和β-氧化而导致T2DM合并MAFLD的进展。因此后续研究需对脂联素是否与TG/HDL-C与T2DM合并MAFLD的相关性有关值得探索。三甲胺n-氧化物(TMAO)是胆碱等含三甲胺物质经肠道菌群和肝脏黄酮单氧化酶代谢的产物。研究表明,氧化三甲胺是心脏代谢疾病的一个独立危险因素,MAFLD患者血清TMAO水平升高,与MAFLD的病理进展密切相关[26]

然而,本研究存在局限性,本研究为横断面回顾性研究,缺乏对T2DM合并MAFLD患者血脂等各项指标的动态观察,后期可行纵向研究证实研究结果。其次样本量较少,难免存在偏倚,以及未考虑到基因、肠道菌群等因素影响。因此,这些数据结果在中国一般人口或其他病种人群中应该谨慎理解,解释。本文的研究结果可为决策者实施针对T2DM合并MAFLD患者肝脏脂肪变联合血脂水平预防方案提供依据,减少MAFLD进展。

致 谢

感谢参与本研究所有人员的辛勤付出。

NOTES

*通讯作者。

参考文献

[1] Kasper, P., Martin, A., Lang, S., Kütting, F., Goeser, T., Demir, M., et al. (2020) NAFLD and Cardiovascular Diseases: A Clinical Review. Clinical Research in Cardiology, 110, 921-937.
https://doi.org/10.1007/s00392-020-01709-7
[2] Tanase, D.M., Gosav, E.M., Costea, C.F., Ciocoiu, M., Lacatusu, C.M., Maranduca, M.A., et al. (2020) The Intricate Relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). Journal of Diabetes Research, 2020, Article ID: 3920196.
https://doi.org/10.1155/2020/3920196
[3] Sohrabi, Y., Reinecke, H. and Godfrey, R. (2021) Altered Cholesterol and Lipid Synthesis Mediates Hyperinflammation in Covid-19. Trends in Endocrinology & Metabolism, 32, 132-134.
https://doi.org/10.1016/j.tem.2021.01.001
[4] Li, X., Hu, X., Pan, T., Dong, L., Ding, L., Wang, Z., et al. (2021) Kanglexin, a New Anthraquinone Compound, Attenuates Lipid Accumulation by Activating the AMPK/SREBP-2/PCSK9/LDLR Signalling Pathway. Biomedicine & Pharmacotherapy, 133, Article ID: 110802.
https://doi.org/10.1016/j.biopha.2020.110802
[5] Xue, L., Qi, H., Zhang, H., Ding, L., Huang, Q., Zhao, D., et al. (2020) Targeting Srebp-2-Regulated Mevalonate Metabolism for Cancer Therapy. Frontiers in Oncology, 10, Article No. 1510.
https://doi.org/10.3389/fonc.2020.01510
[6] Lee, W., Ahn, J.H., Park, H.H., Kim, H.N., Kim, H., Yoo, Y., et al. (2020) Covid-19-Activated SREBP2 Disturbs Cholesterol Biosynthesis and Leads to Cytokine Storm. Signal Transduction and Targeted Therapy, 5, Article No. 186.
https://doi.org/10.1038/s41392-020-00292-7
[7] Lu, J., Meng, Z., Cheng, B., Liu, M., Tao, S. and Guan, S. (2019) Apigenin Reduces the Excessive Accumulation of Lipids Induced by Palmitic Acid via the AMPK Signaling Pathway in Hepg2 Cells. Experimental and Therapeutic Medicine, 18, 2965-2971.
https://doi.org/10.3892/etm.2019.7905
[8] Liu, X., Wu, Q., Chen, Z., Yan, G., Lu, Y., Dai, H., et al. (2020) Elevated Triglyceride to High-Density Lipoprotein Cholesterol (TG/HDL-C) Ratio Increased Risk of Hyperuricemia: A 4-Year Cohort Study in China. Endocrine, 68, 71-80.
https://doi.org/10.1007/s12020-019-02176-5
[9] Baez-Duarte, B.G., Zamora-Gínez, I., González-Duarte, R., et al. (2017) Triglyceride/High-Density Lipoprotein Cholesterol (TG/HDL-C) Index as a Reference Criterion of Risk for Metabolic Syndrome (MetS) and Low Insulin Sensitivity in Apparently Healthy Subjects. Gaceta Médica de México, 153, 152-158.
[10] Chen, Z., Hu, H., Chen, M., Luo, X., Yao, W., Liang, Q., et al. (2020) Association of Triglyceride to High-Density Lipoprotein Cholesterol Ratio and Incident of Diabetes Mellitus: A Secondary Retrospective Analysis Based on a Chinese Cohort Study. Lipids in Health and Disease, 19, Article No. 33.
https://doi.org/10.1186/s12944-020-01213-x
[11] Fan, N., Peng, L., Xia, Z., Zhang, L., Song, Z., Wang, Y., et al. (2019) Triglycerides to High-Density Lipoprotein Cholesterol Ratio as a Surrogate for Nonalcoholic Fatty Liver Disease: A Cross-Sectional Study. Lipids in Health and Disease, 18, Article No. 39.
https://doi.org/10.1186/s12944-019-0986-7
[12] Xue, J., Wang, Y., Li, B., Yu, S., Wang, A., Wang, W., et al. (2021) Triglycerides to High-Density Lipoprotein Cholesterol Ratio Is Superior to Triglycerides and Other Lipid Ratios as an Indicator of Increased Urinary Albumin-to-Creatinine Ratio in the General Population of China: A Cross-Sectional Study. Lipids in Health and Disease, 20, Article No. 13.
https://doi.org/10.1186/s12944-021-01442-8
[13] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) (上) [J]. 中国实用内科杂志, 2021, 41(8): 668-695.
[14] 中华医学会肝病学分会. 代谢相关(非酒精性)脂肪性肝病防治指南(2024 年版) [J]. 中华肝脏病杂志, 2024, 32(5): 418-434.
[15] 薛芮, 范建高. 代谢相关脂肪性肝病新定义的国际专家共识简介[J]. 临床肝胆病杂志, 2020, 36(6): 1224-1227.
[16] 孙先丽, 叶玲玲, 孙红娟. 腰高比预测非酒精性脂肪肝的前瞻性研究[J]. 海南医学, 2022, 33(10): 1245-1248.
[17] Vallejo-Vaz, A.J., Corral, P., Schreier, L. and Ray, K.K. (2020) Triglycerides and Residual Risk. Current Opinion in Endocrinology, Diabetes & Obesity, 27, 95-103.
https://doi.org/10.1097/med.0000000000000530
[18] Chapman, M.J., et al. (2011) Triglyceride-Rich Lipoproteins and High-Density Lipoprotein Cholesterol in Patients at High Risk of Cardiovascular Disease: Evidence and Guidance for Management. European Heart Journal, 32, 1345-1361.
[19] Oliveros-Montiel, A., Santos-López, G. and Sedeño-Monge, V. (2020) Proteins Involved in Lipid Metabolism as Possible Biomarkers or Predisposing Factors for Non-Alcoholic Fatty Liver Disease. Acta Gastro-Enterologica Belgica, 83, 622-630.
[20] Busik, J.V. (2021) Lipid Metabolism Dysregulation in Diabetic Retinopathy. Journal of Lipid Research, 62, Article ID: 100017.
https://doi.org/10.1194/jlr.tr120000981
[21] Charles, K.N., Shackelford, J.E., Faust, P.L., Fliesler, S.J., Stangl, H. and Kovacs, W.J. (2020) Functional Peroxisomes Are Essential for Efficient Cholesterol Sensing and Synthesis. Frontiers in Cell and Developmental Biology, 8, Article ID: 560266.
https://doi.org/10.3389/fcell.2020.560266
[22] Mato, J.M., Alonso, C., Noureddin, M. and Lu, S.C. (2019) Biomarkers and Subtypes of Deranged Lipid Metabolism in Non-Alcoholic Fatty Liver Disease. World Journal of Gastroenterology, 25, 3009-3020.
https://doi.org/10.3748/wjg.v25.i24.3009
[23] Yang, Y., Zhang, W., Wu, X., Wu, J., Sun, C., Luo, F., et al. (2021) Systemic Overexpression of GDF5 in Adipocytes but Not Hepatocytes Alleviates High-Fat Diet-Induced Nonalcoholic Fatty Liver in Mice. Canadian Journal of Gastroenterology and Hepatology, 2021, Article ID: 8894685.
https://doi.org/10.1155/2021/8894685
[24] Chao, H., Chao, S., Lin, H., Ku, H. and Cheng, C. (2019) Homeostasis of Glucose and Lipid in Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 20, Article No. 298.
https://doi.org/10.3390/ijms20020298
[25] Luo, N., Yang, C., Zhu, Y., Chen, Q. and Zhang, B. (2021) Diosmetin Ameliorates Nonalcoholic Steatohepatitis through Modulating Lipogenesis and Inflammatory Response in a Stat1/Cxcl10-Dependent Manner. Journal of Agricultural and Food Chemistry, 69, 655-667.
https://doi.org/10.1021/acs.jafc.0c06652
[26] Tan, X., Liu, Y., Long, J., Chen, S., Liao, G., Wu, S., et al. (2019) Trimethylamine n‐Oxide Aggravates Liver Steatosis through Modulation of Bile Acid Metabolism and Inhibition of Farnesoid X Receptor Signaling in Nonalcoholic Fatty Liver Disease. Molecular Nutrition & Food Research, 63, e1900257.
https://doi.org/10.1002/mnfr.201900257

Baidu
map