探讨结直肠癌中的免疫抑制机制:MDSCs与TGF-β1的相互作用
Exploring Mechanisms of Immunosuppression in Colorectal Cancer: Interaction of MDSCs with TGF- β1
DOI: 10.12677/acm.2025.152546, PDF, HTML, XML,   
作者: 陈鹏远:内蒙古医科大学鄂尔多斯临床医学院,内蒙古 鄂尔多斯;鄂尔多斯市中心医院康巴什部普外科,内蒙古 鄂尔多斯;王 亮*:鄂尔多斯市中心医院康巴什部普外科,内蒙古 鄂尔多斯
关键词: 结直肠癌髓源性抑制细胞转化生长因子β-1免疫逃逸肿瘤微环境Colorectal Cancer Myeloid-Derived Suppressor Cells Transforming Growth Factor β-1 Immune Escape Tumor Microenvironment
摘要: 结直肠癌(CRC)作为当下严重的健康问题,在一众癌症中具有高发病率和致死率,究其原因,肿瘤微环境中的免疫抑制机制是推动肿瘤进展的重要因素,其中髓源性抑制细胞(MDSCs)和转化生长因子 β-1 (TGF- β1)在此过程中发挥着关键作用。MDSCs是一群具有异质性的未成熟髓系细胞,在结直肠癌患者的癌巢及外周血中显著扩增,参与肿瘤的免疫逃逸与转移过程。研究表明,MDSCs在肿瘤微环境中不仅支持癌细胞的生存,还可以通过分泌TGF- β1等免疫抑制因子,重塑免疫微环境,削弱机体的抗肿瘤免疫反应。此外,TGF- β1通过促进MDSCs的生成和功能,形成一种“恶性正反馈”,进一步加剧肿瘤的免疫逃逸。针对MDSCs和TGF- β1的治疗策略已显示出抑制肿瘤进展的潜力,并在临床研究中取得了一定成效。本文旨在总结MDSCs在结直肠癌中作用机制及TGF- β1的关键功能,概述针对MDSCs与TGF- β1的靶向治疗策略,以期为结直肠癌的防治提供新的思路和方向。这些研究为改善患者的免疫状态和提高治疗效果提供了重要参考,为进一步的临床应用铺平了道路。
Abstract: Colorectal cancer (CRC) is a serious health problem that is characterized by high morbidity and lethality. The immunosuppressive mechanism in the tumor microenvironment is an important factor driving tumor progression. In this process, myeloid-derived suppressor cells (MDSCs) and transforming growth factor- β (TGF- β) play key roles. Growth factor β-1 (TGF- β1) plays a pivotal role in this process. MDSCs are a heterogeneous group of immature myeloid cells that are significantly expanded in the cancer nests and peripheral blood of colorectal cancer patients. These cells are involved in the process of immune escape and metastasis of tumors. Research has demonstrated that MDSCs not only support the survival of cancer cells within the tumor microenvironment, but also remodel the immune microenvironment and diminish the body’s anti-tumor immune response by secreting immunosuppressive factors, such as TGF- β1. Moreover, TGF- β1 has been shown to promote the production and function of MDSCs, thereby establishing a “malignant positive feedback loop” that further exacerbates the immune escape of tumors. Therapeutic strategies targeting MDSCs and TGF- β1 have demonstrated potential for the inhibition of tumor progression and have shown efficacy in clinical studies. The aim of this paper is to provide a summary of the mechanism of action of MDSCs in colorectal cancer and the key functions of TGF- β1, and to outline targeted therapeutic strategies against MDSCs and TGF- β1. These strategies are intended to provide new ideas and directions for the prevention and treatment of colorectal cancer. These studies provide a valuable reference for enhancing patients’ immune status and improving therapeutic outcomes, thereby paving the way for further clinical applications.
文章引用:陈鹏远, 王亮. 探讨结直肠癌中的免疫抑制机制:MDSCs与TGF- β1的相互作用[J]. 临床医学进展, 2025, 15(2): 1864-1878. https://doi.org/10.12677/acm.2025.152546

1. 引言

1.1. 结直肠癌的流行病学与病理特点

结直肠癌(colorectal cancer, CRC)作为全球发病率居高不下的恶性肿瘤之一,其发生机制的解析与治疗策略的研发一直是医学研究的热点。目前结直肠癌是全球发病率第三、死亡率第二的癌症,且呈逐年上升趋势[1]。流行病学研究揭示,由多种环境与遗传因素共同作用,促成结直肠癌的发生发展,肿瘤微环境中的免疫调节紊乱在这一过程中起至关重要的作用。髓源性抑制细胞(MDSCs)和转化生长因子β-1 (TGF-β-1)的水平在结直肠癌患者体内的显著升高,表明它们可能协同推动肿瘤免疫逃逸和恶化进程[2]。近年来,许多研究聚焦于解构MDSCs与TGF-β-1在肿瘤微环境中的作用机制,对MDSCs与TGFβ-1在结直肠癌中的免疫抑制、细胞增殖、迁移和侵袭相关的分子调节网络等机制进行了深入探究。这些研究成果有助于我们理解MDSCs与TGF-β-1是如何通过促进免疫逃逸和维持组织慢性炎症来促进结直肠癌的发生发展[3] [4]。同时,鉴于MDSCs和TGF-β-1在结直肠癌中的重要性,聚焦于研发针对它们的靶向药物和免疫疗法早已提上日程,以期望可削弱肿瘤免疫抑制环境,增强患者的免疫应答能力[5] [6]

1.2. MDSCs与TGF-β1在肿瘤免疫中的作用概述

在结直肠癌的肿瘤微环境(TME)中,TGF-β1和MDSCs之间的相互作用对肿瘤生长和免疫逃逸起着至关重要的作用[7]。MDSCs作为一种免疫抑制性细胞群体,可通过分泌TGF-β1以及其他抑制性细胞因子,可以发挥强力的免疫抑制性,帮助肿瘤细胞逃避宿主免疫监视[8]。TGF-β在结直肠癌中的作用不仅限于影响MDSCs的分化和持续扩展,还通过促进其免疫抑制功能,进一步加剧肿瘤的免疫逃逸[9]。此外,TGF-β1与肿瘤相关巨噬细胞(TAMs)的产生和活化密切相关,而这些细胞在肿瘤的进展过程中发挥着推动作用[10]。有研究表明,TGF-β1还可以通过调节MDSCs产生的免疫抑制分子,增强它们对CD4+ T细胞增殖的抑制作用[11]。另有研究发现,在非小细胞肺癌(NSCLC)在出现PD-L1高表达的情况下,环状GMP-AMP合酶(cGAS)阳性表达的肿瘤可能预示着PD-1/L1抑制剂的疗效不佳,其中TGF-β可能在此过程中起关键作用[12]。一使用16S rRNA测序测序的实验提示,细菌Alistipes相关的TNF-α和IL-6可能会激活LRG1/TGF-β1信号传导,从而导致CRC癌变[13]。针对这些研究结果,科学家们正在开发新的治疗策略,旨在抑制TGF-β信号通路,以应对肿瘤的免疫逃逸现象,并有效促进抗肿瘤免疫反应[14]。这些新的研究已经显示出针对抗TGF-β1治疗癌症的强大潜力,特别是在结直肠癌免疫治疗中的应用。进一步的研究表明,降低肿瘤源性TGF-β的水平可以显著减小肿瘤体积,延缓肿瘤的形成,甚至在实验动物中延长其寿命[15]。这一发现为开发新型的抗结直肠癌疗法提供了新的研究方向,具有重要的临床应用前景。

2. MDSCs、TGF-β1在结直肠癌中的免疫抑制机制

2.1. MDSCs在结直肠癌中的免疫抑制机制

在结直肠癌的免疫抑制环境中,MDSCs发挥了关键作用,其分类和来源的多样性对抑制肿瘤免疫应答的有效性至关重要。在健康人体内,免疫系统中的未成熟髓系细胞(IMC)通常会分化为三种主要类型之一:粒细胞、巨噬细胞或树突状细胞。然后在急、慢性感染、广泛创伤或自身免疫疾病等情况下,持续的组织损伤会导致长期的应急造血,导致IMCs的不断扩增并释放到循环中,这一过程被称为紧急髓系造血[16]。如果这些情况可以得到解决,那么髓系细胞的平衡就会逐渐恢复,并不会对宿主造成负面影响。但上述异常状态的持续刺激,会导致骨髓祖细胞虽发生扩增,但分化受阻,从而导致这些细胞无法正常分化,出现病理激活[17]。MDSCs具有非特异性免疫和适应性免疫的特性,在包括癌症在内的多种疾病中发挥重要作用。现阶段MDSCs的免疫表型尚未完全统一,但人类的MDSCs通常可以通过髓系细胞标记物CD33、CD34和CD11b,以及调控免疫反应和细胞功能的IL-4Rα (CD124)等标记物进行鉴定,同时缺乏成熟免疫细胞的典型标记从而表现出Lin−、HLA-DR− [18]。MDSCs大致分为三类:1) 粒细胞样MDSCs (G-MDSCs),其形态类似中性粒细胞,其表面标志在人类中为CD11b+、CD14−、CD15+或CD66b+,在小鼠中为CD11b+、Ly6G+、Ly6Clow;2) 单核细胞样MDSCs (M-MDSCs),其形态类似单核细胞,表面标志在人类中为CD11b+、CD14+、HLA-DR低/−,在小鼠中为CD11b+、Ly6G-、Ly6Chigh;3) 未成熟MDSCs (I-MDSCs)或早期MDSCs (eMDSCs),其表面标记为CD33+、CD11b+、HLA-DR低/−、CD14−、CD15−,在特定环境下可分化为G-MDSCs或M-MDSCs [8] [19]。M-MDSCs与PMN-MDSCs在结直肠癌的免疫逃逸中扮演的角色虽然相似,但确实通过不同的分子机制对T细胞活性产生影响。研究显示,M-MDSCs倾向于通过诱导调节性T细胞(Treg)的增殖以及产生免疫抑制细胞因子如TGFβ-1来发挥作用,而PMN-MDSCs则通过产生反应氧物质(ROS)和亚硝酸盐来直接抑制T细胞[20]。另有大量研究表明,MDSCs能够被一系列细胞因子和化学信号,包括VEGF、IL-6和GM-CSF等所激活,并随着结直肠癌的进展而数量增加[1] [21]。在结直肠癌的免疫抑制环境中,髓系抑制细胞(MDSCs)发挥了关键作用,其分类和来源的多样性对抑制肿瘤免疫应答的有效性至关重要。健康个体的未成熟髓系细胞(IMCs)通常分化为粒细胞、巨噬细胞或树突状细胞。然而,在急性或慢性炎症、创伤或自身免疫疾病等情况下,持续的组织损伤会导致IMCs的扩增并释放到循环中,这一过程称为紧急髓系造血。如果这些情况得到解决,髓系细胞的平衡会逐渐恢复,但若异常状态持续,则会导致骨髓祖细胞的扩增和分化受阻,形成病理激活的MDSCs。

MDSCs具有非特异性免疫和适应性免疫的特性,通常通过髓系细胞标记物如CD33、CD34和CD11b进行鉴定,并缺乏成熟免疫细胞的典型标记。MDSCs大致分为三类:粒细胞样MDSCs (G-MDSCs)、单核细胞样MDSCs (M-MDSCs)和未成熟MDSCs (I-MDSCs)。M-MDSCs和PMN-MDSCs在结直肠癌的免疫逃逸中扮演相似角色,但通过不同的分子机制影响T细胞活性。研究表明,M-MDSCs倾向于诱导调节性T细胞(Treg)的增殖并产生免疫抑制因子如TGFβ-1,而PMN-MDSCs则通过产生反应氧物质(ROS)直接抑制T细胞。

在结直肠癌患者中,MDSCs的数量显著增加,这一变化与肿瘤的进展呈正相关[22]。这种数量的变化不仅在外周血中可见,在肿瘤微环境中更加明显,表明MDSCs在促进局部免疫逃逸和肿瘤进展中扮演着重要角色[23]。MDSCs与TGF-β1之间的相互作用进一步增强了其免疫抑制功能,TGF-β1是已知能够促进MDSCs生成和免疫抑制活性的细胞因子之一。研究发现,在高TGF-β1表达的结直肠癌组织中,MDSCs的免疫抑制功能显著增强[20]。MDSCs与TG-Fβ1的上升水平与肿瘤负担呈正相关,表明它们在肿瘤进展中具有协同效应[24]。TGF-β1作为结直肠癌中的关键调节分子,其异常表达与肿瘤的发生、发展和转移密切相关。TGF-β1通过复杂的信号传导途径影响癌细胞的增殖、分化和凋亡,同时参与肿瘤微环境的改造。其信号通路的活化往往导致肿瘤细胞逃逸免疫监视,促进肿瘤的免疫逃逸。MDSCs通过TGF-β1等关键因子的影响,与肿瘤细胞相互作用,共同推动结直肠癌的免疫逃逸和肿瘤进展。此外,肿瘤微环境中的因子,包括MYL9、VEGFA、GLP-1等,通过各种途径诱导MDSCs活化并参与调控TGF-β1的表达,这为结直肠癌治疗提供了新的靶点[25]-[27]。故针对MDSCs和TGF-β1的治疗策略可能为结直肠癌的免疫治疗提供新的靶点。通过抑制MDSCs的生成和功能,恢复免疫系统对肿瘤的监控和杀伤作用,可能提高抗肿瘤治疗的效果。此外,中医药方如芍药汤、养肝益中方等也显示出降低结直肠癌患者体内MDSCs比例的潜力,提示传统中医药在结直肠癌治疗中的应用前景[28] [29]。尽管这些研究为结直肠癌的治疗提供了新的视角,但仍需深入探讨其机制,以开发更有效的临床应用策略。

2.2. TGF-β1在结直肠癌中的调控作用

TGF-β1在调节细胞增殖、分化和凋亡中发挥着复杂的作用,在结直肠癌中作为关键调节分子,其异常表达与肿瘤的发生、发展及转移密切相关[30]。此外,TGF-β1在结直肠癌患者的血清中含量与肿瘤的大小、分化程度以及临床分期呈显著相关性,表明其可作为判定肿瘤进展和预后的重要因子[31] [32]。但其在肿瘤细胞中存在双重作用,在恶性肿瘤前期细胞中,TGF-β1具有强大的细胞抑制和促凋亡活性,然而在恶性转化后期,在Wnt通路的作用下,其下游效应物或信号传导元件发生突变,使它转变为有利于上皮–间质转化(EMT)和转移的驱动因素[33] [34]。这一转变使得TGF-β启动信号级联,通过上调基质金属蛋白酶(MMPs)促进EMT,MMPs可分解细胞外基质(ECM)成分,以促进肿瘤细胞的侵袭,使其能够突破基底膜并侵入周围组织,进而通过血液循环或淋巴系统扩散至远处器官形成转移灶[35]

作为细胞因子的TGF-β1拥有复杂信号的传导途径,如Smad依赖和独立通路,如MAPK通路、Rho-GTPase通路等,可影响癌细胞增殖、分化和凋亡,同时参与肿瘤微环境改造,为肿瘤生长提供必要条件[36]。SMAD蛋白作为TGF-β信号通路的中心介质,其中SMAD2和SMAD4突变会破坏TGF-β信号传导,导致细胞生长不受控制和肿瘤进展。但是在肿瘤早期,TGF-β/SMAD通路却主要充当抑癌基因,随后逐渐通过EMT等机制促进转化,并赋予上皮细胞干细胞样特征,使其获得间充质细胞的特性,包括强力的迁移和侵袭能力[37]。CRC细胞还可通过分泌胶原三螺旋重复蛋白-1 (CTHRC1)和激活TGF-β信号通路刺激M2型巨噬细胞极化,促进炎症和肿瘤发生发展。CTHRC1又可直接与TGFβR-2和TGFβR-3相互作用,稳定配体–受体复合物。反过来,M2型TAMs通过TGF-β/SMAD信号通路促进Tregs的产生,并通过SMAD2,3-4/Snail/E-cadherin信号通路诱导EMT,从而增强转移[38]。在肿瘤发展进程中,TGF-β/MAPK通路的激活可促进肿瘤细胞增殖,上调细胞周期相关蛋白表达使细胞周期进程加快,同时该通路还参与细胞转化过程,在胶质母细胞瘤细胞系T98G中,TGF-β/MAPK通路可促进细胞形成集落,这是细胞转化的标志之一,而抑制该通路可减弱这种转化能力[39]。在Rho GTPases方面,其与TGF-β之间存在广泛的信号串扰,尤其是在正常和肿瘤上皮细胞的EMT和细胞运动过程中,Rho和Rac1具有协同作用;而Rac1的相关异构体Rac1b在胰腺癌细胞中作为TGF-β信号的内源性抑制剂出现。另有文献提到TGF-β可诱导内皮细胞中RhoA和RhoB参与细胞激活和毛细血管形成;TGF-β诱导的其他结构(如足小体)依赖于Rho GTPases,有助于确定TGF-β受体下游的其他信号通路,该模型中与足小体相关的蛋白水解活性表明其在血管重塑中的作用[40]

其信号通路活化常导致肿瘤细胞逃逸免疫监视,通过促进形成抑制性的肿瘤基质和新生血管,促进免疫逃逸[41]。TGF-β1作为一种有效的T细胞生长抑制剂,可抑制T细胞本身的IL-2表达和分泌[42]。同时TGF-β1也会阻止DC成熟,减少抗原呈递和共刺激分子的表达[43]。TGF-β1还可通过下调T/B淋巴细胞、NK细胞的活化及巨噬细胞的吞噬能力,进一步促进肿瘤的逃避免疫监视[31] [44]。TGF-β1通过信号通路促进纤维化组织形成,改变免疫细胞功能,对肿瘤生长和转移有重要影响。根据最新研究,KRAS 抑制剂可能通过下调TGFβ介导的EMT来预防CRC异时转移[45]。由于TGF-β1在肿瘤形成和进展中的多方面作用,它已成为了结直肠癌靶向治疗的潜在靶点[31] [36]。MDSCs作为肿瘤微环境中的免疫抑制细胞群体,与肿瘤细胞相互作用,共同推动结直肠癌免疫逃逸和肿瘤进展。针对TGFβ-1的药物研发展现出抑制 MDSCs 并重建肿瘤免疫微环境的前景[46],虽然抑制TGFβ-1路径减少肿瘤免疫逃逸潜力是未来结直肠癌治疗的诱人策略,但是目前TGF-β1靶向疗法的开发进展缓慢,可能是因为担心在肿瘤发生的早期阶段阻断TGF-β1施加的肿瘤抑制可能产生严重毒性[47]

3. MDSCs与TGF-β1的相互作用

3.1. MDSCs对TGF-β1的影响

MDSCs通过多种机制影响TGF-β1的表达和信号通路,成为结直肠癌免疫逃逸的重要调节因子。研究表明,MDSCs能够通过其表面分子CD40与T细胞上的CD40L相互作用,促进TGF-β1的产生与分泌[20]。在这一过程中,IL-10和TGF-β的参与不仅增强了MDSCs自身的免疫抑制功能,还在局部微环境中造成免疫耐受状态,进一步助力肿瘤细胞的生存与增殖[36]。特别是在肿瘤微环境中,MDSCs分泌的IL-10影响下的TGF-β1能够直接影响肿瘤相关细胞的表型,促使肿瘤相关成纤维细胞(CAFs)的激活和增殖,为肿瘤细胞提供保护性的基质[48]。针对MDSCs分泌的TGF-β1进行靶向干预,并结合相应的信号通路抑制剂,如18β-甘草次酸组,可以显著下调Arg-1、iNOS和ROS等免疫抑制因子的表达,证实了这一调控路径在肿瘤免疫逃逸环境中的核心作用[49]。最新研究发现,双靶向CAR-T细胞治疗,如针对FAP和CLDN18.2的双靶向CAR-T细胞,能够有效抑制髓源抑制性细胞(MDSCs)的招募,从而增强CD8+ T细胞的持久性和功能。在体内实验中,D-CAR1、3、6治疗组显著减少了MDSCs的招募,使更多CD8+ T细胞浸润到肿瘤组织中,增强了抗肿瘤效果。此外,双靶向CAR-T细胞治疗还可能通过降低TGF-β的表达来减少T细胞的耗竭,从而增强T细胞的效应功能。对不同CAR-T治疗组肿瘤组织中TGF-β表达水平的检测显示,治疗效果较好的组(如D-CAR1、3、6) TGF-β表达降低,与T细胞耗竭减少、IFN-γ分泌增加及免疫检查点蛋白表达降低相关[50]。这为开发新的抗肿瘤疗法提供了理论依据,通过精准打击MDSCs及其分泌因子,尤其是TGFβ-1,可能有效改善结直肠癌患者的免疫状态,并提高现有治疗手段的疗效。

此外,MDSCs还通过分泌多种区域选择性因子显著影响免疫抑制环境的建立,并在结直肠癌的发展中发挥复杂而关键的作用[51]。研究显示,MDSCs可促进TGFβ-1信号通路的激活,从而不仅加强肿瘤与免疫细胞间的免疫抑制交流,还影响细胞凋亡及增殖相关因子的表达,最终促进结直肠癌细胞的生存及恶化[52]。MDSCs介导的TGFβ-1信号激活还涉及肿瘤微环境的重塑,包括细胞外基质的调整及血管生成,使癌细胞在更广泛的生物学过程中获益,进一步增强结直肠癌的侵袭性与转移性[53]。另有研究提到MDSCs通过表达诱导型一氧化氮合酶等免疫抑制分子,与TGFβ-1共同作用,协同增强其在肿瘤微环境中的免疫抑制能力,进而促进癌细胞的侵袭和转移[54]。同时,TGFβ-1不仅调节MDSCs的分化,还能够直接激活其免疫抑制功能,增加MDSCs群体中的单核细胞量,并提高其抑制CD4+ T细胞增殖的能力。这种协同作用为肿瘤提供了生存和发展的有利条件,使肿瘤细胞在免疫系统的监视下逃逸,并维持抑制性肿瘤微环境。

这些发现不仅增强了我们对结直肠癌免疫微环境复杂性的理解,也为开发新型免疫治疗策略提供了潜在的靶点。

3.2. TGF-β1在MDSCs功能调节中的角色

相同的,TGF-β1对MDSCs功能的调节至关重要,尤其在结直肠癌的免疫逃逸进程中扮演着核心角色。TGF-β1显著促进MDSCs的免疫抑制功能。其通过激活信号通路,促使MoMDSCs族群扩张并且上调免疫抑制分子表达,从而增强MDSCs对CD4+ T细胞增殖的抑制作用[54],为结直肠癌细胞构建免疫防御机制。同时,TGF-β1不仅可以增加MDSCs数量,还激活其免疫抑制效应,如诱导IL-4和IL-10等抗炎细胞因子分泌,这抑制了NK细胞中SMAD信号传导,减弱NK细胞介导的肿瘤细胞清除效果[55]。同时,TGF-β1诱导naive CD4+ T细胞向Tregs分化,扩充Tregs群体,加剧肿瘤免疫逃避现象[56]。另一方面,从影响MDSCs表型与分化角度来看,TGF-β1/Smad信号通路及MAPK等途径发挥着重要作用[57]。通过TGF-β1/Smad信号通路,TGF-β1能够显著促进MDSCs的膜表面分子变化,增强它们对T细胞功能的抑制作用[58]。在结直肠癌病理过程中,TGF-β1作为多功能细胞因子,还兼具抑制炎症反应和促进细胞迁移的能力,在肿瘤免疫逃逸中发挥双重作用[54]

因此,在结直肠癌的发展进程中MDSCs与TGF-β1的相互作用可能具有时空特异性。在肿瘤发生的早期阶段,MDSCs可能主要通过旁分泌TGF-β1来抑制周围免疫细胞的活性,营造出一个相对温和的免疫抑制微环境,有利于肿瘤细胞的初始定植和生长。但随着肿瘤的发展,当肿瘤进入快速增殖和转移阶段时,TGF-β1可能会诱导MDSCs发生表型转换,使其获得更强的促血管生成和转移相关的功能,此时MDSCs与TGF-β1的相互作用更加紧密和复杂,以共同促进肿瘤的侵袭和转移。这种时空特异性的动态关联可能为开发阶段性的精准治疗策略提供依据。

4. MDSCs与TGF-β1靶向治疗的研究动态

4.1. MDSCs的治疗现状

在针对MDSCs的治疗中,研究者们探索了多种药物干预和免疫调节策略,旨在抑制MDSCs的扩增、招募及功能,从而增强抗肿瘤免疫反应。

4.1.1. 抑制扩增和招募

MDSCs的存在会降低免疫检查点抑制剂的疗效,因此通过抑制MDSCs的扩增和活性,可以增强免疫检查点抑制剂的治疗效果。如抗PD 1、抗CTLA 4等药物,能够恢复T细胞的功能,增强机体的抗肿瘤免疫反应[59]

血管生成抑制剂如贝伐珠单抗可通过抑制血管生成因子VEGF (NCT01730950),减少肿瘤血管形成,从而抑制MDSCs的招募和迁移[60],其在多种癌症治疗中显示出一定效果,特别是在结直肠癌的临床研究中,可降低肿瘤内MDSCs的浸润,提高治疗效果[61]。一些细胞因子抑制剂也在针对MDSCs的治疗中表现出明显疗效,S100A8/A9抑制剂Tasquinimod在前列腺癌治疗中可减少MDSCs的积累[62]。靶向IL-1β可作为K-ras突变肺癌的免疫预防和治疗方式,阻断IL-1β的信号通路,可抑制PMN-MDSCs的扩增和迁移[63]。CCL2/CC趋化因子受体2抑制剂可以抑制MDSCs的募集,减少肿瘤局部的免疫抑制环境[64]。其他抑制剂包括HIF 1α抑制剂(PX 478)、ENTPD2抑制剂等,可通过调节细胞代谢和信号通路,抑制MDSCs的增殖和活化[65]

过继性细胞疗法可将扩增后的免疫细胞(如T细胞、NK细胞等)回输到患者体内,直接攻击肿瘤细胞。但MDSCs的抑制作用会影响细胞治疗的效果,因此,在细胞治疗的过程中抑制MDSCs,能够显著提高细胞治疗的疗效[66]

4.1.2. 促进分化

维生素D和维生素E的代谢中间产物(如1,25二羟基维生素D3)以及维生素E能够诱导MDSCs细胞的分化,并减少不成熟MDSCs的存在[67]。这在黑色素瘤的临床治疗试验中表现出良好的耐受性和安全性,能够降低MDSCs比例,提高免疫治疗的效果。此外,全反式维甲酸可以促进单核细胞MDSCs向巨噬细胞和树突状细胞分化,并通过上调谷胱甘肽合成酶和中和高ROS的产生来增强T细胞的反应,从而提升相关免疫检查点抑制剂的临床疗效[68]。其他物质,如葫芦素B,作为STAT3抑制剂,能够减少晚期肺癌患者外周血中未成熟髓系细胞,加速MDSCs的凋亡,提高CAR T细胞疗法的抗肿瘤效应[69]。MIF抑制剂的应用有助于MDSCs的分化和功能调节[70]

4.1.3. 抑制功能

恩替司他、恩替诺他均可靶向下调ARG1、诱生型NOS和COX 2的表达,从而抑制MDSCs的功能,可延长临床前肿瘤模型的生存期并延缓肿瘤生[71] [72]。精氨酸酶抑制剂可以减少MDSCs的免疫抑制作用,其他如环氧合酶(COX)和一氧化氮合酶(iNOS)的抑制剂也能降低MDSCs产生的免疫抑制因子。TRAIL受体激动剂能选择性靶向MDSCs,诱导其凋亡,减少MDSCs数量,增强抗肿瘤免疫反应[72] [73]。抑制抗死亡受体5 (DR5),如使用MD5-1可特异性耗尽MDSCs,促进CD8+ T细胞扩增,逆转免疫治疗的耐药性[74]。另有研究发现,铁死亡的发生显着减少了肿瘤微环境中髓源性抑制细胞(MDSCs)和肿瘤相关M2样巨噬细胞(M2 TAM)的数量[75]

4.1.4. 直接消耗

传统化疗药(如5氟尿嘧啶、奥沙利铂、紫杉醇、吉西他滨等)能选择性消耗MDSCs,诱导其凋亡,从而增强抗肿瘤免疫反应。这些药物在多种癌症的治疗中得到广泛应用[76]。新型靶向治疗药物如酪氨酸激酶抑制剂(索拉非尼、舒尼替尼等),可直接靶向MDSCs的信号通路,抑制其增殖和活化,发挥抗癌作用。抗CD33抗体(如吉妥单抗,Gemtuzumab)能够特异性识别和结合MDSCs表面的CD33分子,促使MDSCs凋亡,减少其数量,在白血病等癌症的治疗中展现出疗效[77]。小分子靶向药物:例如PI3K抑制剂(如IPI 549)与nivolumab联用,在治疗晚期黑色素瘤的临床试验中显示出良好的效果,能够抑制MDSCs的功能,并增强抗肿瘤免疫反应[78]。STAT3抑制剂(如AZD9150、Napabucasin等)通过抑制STAT3信号通路,消除MDSCs的免疫抑制能力,在淋巴瘤、乳腺癌等癌症研究中展现出潜在的应用价值[79]

4.2. TGFβ-1的治疗现状

4.2.1. 在癌症治疗中的应用

TGF-β1在癌症发生发展中具有复杂作用,在肿瘤进展后期,它可通过促进上皮–间质转化(EMT)、刺激血管生成和免疫抑制等机制推动肿瘤发展。有研究发现,TGF-β1介导的EMT过程涉及上皮细胞失去原有特性,如细胞间粘附和极性降低,转变为具有间充质细胞样特性,从而促进肿瘤细胞迁移和侵袭[80]-[82];同时,它作为众所周知的促血管生成因子,能刺激肿瘤细胞产生血管生成因子,与血管内皮生长因子A(VEGFA)相协同,促进肿瘤血管生成,为肿瘤生长提供营养支持[83] [84];还可抑制免疫细胞功能,如抑制T细胞增殖、活化和效应功能,增加调节性T细胞数量,从而帮助肿瘤细胞逃避免疫监视[85]

鉴于TGF-β1在肿瘤进展中的作用,针对其信号通路的靶向治疗策略应运而生。包括使用单克隆抗体 LY3022859来中和TGF-β1,阻止其与受体结合[86];利用配体陷阱(如可溶性TβRII和可溶性TβRIII等)结合TGF-β1,防止其激活信号通路[87] [88];开发反义分子(如Trabedersen)抑制TGF-β1合成[89];采用小分子抑制剂(如Galunisertib、Vactosertib、LY3200882等)抑制TGF-β1受体激酶活性,阻断信号传导[90] [91];以及探索免疫治疗策略,如通过调节免疫细胞功能来增强抗肿瘤免疫反应,或使用双功能药物(如Bintrafusp alfa)同时靶向TGF-β1和其他免疫相关靶点(如PD-L1),以提高治疗效果[92]

4.2.2. 在其他疾病中的潜在应用或影响

纤维化疾病:TGF-β1在纤维化疾病中异常激活可导致细胞外基质过度沉积,进而引起器官纤维化。例如在肺纤维化、肝纤维化等疾病中,TGF-β1信号通路的异常活化促进成纤维细胞增殖和胶原合成,破坏组织正常结构和功能[93]。因此,抑制TGF-β1信号通路可能成为治疗纤维化疾病的一种策略,如Pirfenidone通过抑制TGF-β1等机制,在治疗特发性肺纤维化等疾病中显示出一定疗效,它能减少TGF-β2蛋白水平,抑制细胞增殖、迁移和基质沉积,改善疾病症状[94]

免疫相关疾病:TGF-β1作为天然免疫抑制剂,在免疫系统调节中发挥重要作用。在某些情况下,如在自身免疫性疾病中,TGF-β1可能参与调节免疫平衡,但其具体作用机制较为复杂。一方面,它可能通过抑制免疫细胞过度活化来减轻炎症反应;另一方面,若TGF-β1表达或功能异常,可能导致免疫失调,影响疾病的发生发展[93]-[96]。在艾滋病发病机制中,TGF-β1既抑制HIV病毒表达,又抑制免疫系统功能,对疾病进程产生复杂影响[97]

骨相关疾病:TGF-β1参与骨形成过程,如刺激成骨细胞活性,对骨组织的正常发育和维持具有重要意义。在骨关节炎等疾病中,TGF-β1可能通过调节细胞外基质代谢、炎症反应等机制影响疾病进展,IL-10和TGF-β1可能共同介导氨基葡萄糖在骨关节炎中的软骨保护作用,为骨关节炎的治疗提供了新的研究方向[98] [99]

4.3. MDSCs联合TGF-β1在肿瘤中的治疗现状

在肿瘤的发生发展进程中,MDSCs与TGF-β1之间存在着紧密的联系,针对二者的联合研究在肿瘤治疗方面取得了一定的进展。有研究发现,SMAD4缺陷型结直肠癌中,CCR1⁺-G-MDSCs通过CCL15/CCR1和CCL9/CCR1轴被招募至肿瘤部位,其产生的大量TGF-β抑制CTLs活性,促进肿瘤转移,基于此,研究人员构建了表达CCR1和TGFBR2分子的工程化纳米囊泡(C/T-NVs),可通过 CCL9/CCR1轴靶向肿瘤,减少肿瘤内MDSCs积累和TGF-β水平,激活CTLs,在小鼠模型中显著抑制CRC肝转移的发生。并且C/T-NVs与抗PD-L1抗体联合使用,可促进肿瘤周围三级淋巴结构形成,增强CTLs、CXCL13 + CD4 + T细胞、CXCR5 + CD20B细胞的活化和细胞因子分泌,有效清除肿瘤的转移灶[100]。在乳腺癌中,TGF-β可发挥中和作用改变MDSCs的数量、分化方向以及细胞因子的分泌情况,从而对肿瘤进展产生影响。同样地,在结直肠癌的研究中也发现肿瘤细胞分泌的TGF-β能够驱动单核细胞向具有免疫抑制功能的M-MDSCs分化,故而抑制这一过程有望成为新的治疗靶点[101]。在头颈部癌等的研究中,TGF-β1诱导产生的MDSCs与放疗联合应用时,可增强肿瘤细胞的相关分子表达,促进肿瘤的清除和小鼠的长期存活[102]。在结肠炎相关结直肠癌中,中药复方参苓白术散能够降低MDSCs的浸润和TGF-β1的水平,抑制上皮–间充质转化,从而减少肿瘤的发生发展[103]。在肿瘤免疫治疗的研究中,IL-36γ 联合TGF-β抗体可对荷瘤小鼠中MDSCs及其亚群的比例和功能产生影响,下调相关细胞比例,促进部分细胞分子表达,抑制特定细胞分化,增强肿瘤免疫应答[103]

然而,现有靶向治疗策略仍面临诸多局限性与挑战。从靶向载体角度看,像C/T-NVs这类工程化纳米囊泡,虽能实现一定程度的靶向运输,但在大规模生产过程中存在制备工艺复杂、成本高昂的问题,难以满足临床大量需求;且纳米囊泡在体内的稳定性也有待进一步提高,其在血液循环中可能受到多种因素影响,导致提前释放药物或被免疫系统快速清除,降低治疗效果[100]。在抗体类药物方面,TGF-β抗体虽能中和TGF-β的活性,但在实际应用中部分实验对象出现耐药现象,这可能是由于肿瘤细胞存在多种逃逸机制,如通过上调其他替代信号通路来弥补TGF-β信号被阻断后的功能缺失[101]。同时,抗体的特异性结合能力在不同个体间存在差异,某些患者体内可能存在与抗体结合的干扰物质,影响其对靶标的有效识别[100]。对于联合治疗方案,不同治疗手段之间的协同性难以精准把控,C/T-NVs与抗PD-L1抗体联合使用时,如何确定最佳的用药剂量和时间间隔,以实现最大程度的免疫激活且避免过度免疫反应,仍是亟待解决的问题[101]。此外,联合治疗带来的毒副作用叠加风险也不容忽视,可能会给患者的身体机能带来额外负担,影响治疗依从性。在针对MDSCs的干预策略中,抑制其分化或功能的同时可能会对正常造血干细胞的分化产生潜在影响,导致血液系统的不良反应。而且肿瘤微环境的复杂性使得单一的靶向治疗很难全面覆盖所有肿瘤细胞及其相关免疫调节细胞,易出现治疗死角,导致肿瘤复发[102] [103]

故尽管目前在MDSCs联合TGF-β1的肿瘤治疗研究方面已取得一定成果,但仍需进一步深入探究其作用机制,优化治疗策略,以推动其在临床治疗中的广泛应用。

5. 结语

在当下的CRC的研究中,MDSCs与TGF-β1之间的相互作用是肿瘤免疫逃逸和进展的重要机制。MDSCs通过分泌TGF-β1等免疫抑制因子,增强了免疫微环境中肿瘤细胞的免疫逃逸能力,反过来,TGF-β1也促进了MDSCs的生成和功能,在肿瘤发生发展中形成一个恶性循环。

许多研究表明MDSCs的数量与肿瘤负荷呈正相关,如此时肿瘤组织伴随高TGF-β1表达,那么其免疫抑制功能将得到显著增强。肿瘤组织中的TGF-β1不仅可以影响MDSCs的分化和扩展,还通过调节其相关免疫抑制分子的表达,进一步加剧肿瘤的免疫逃逸。此外,MDSCs还通过促进TGF-β1的产生,影响肿瘤相关成纤维细胞(CAFs)的激活,为肿瘤细胞提供保护。

目前针对MDSCs和TGF-β1的靶向治疗策略正在积极研发。通过抑制MDSCs的扩增和功能,或使用抗TGF-β1抗体和小分子抑制剂,可以恢复免疫系统对肿瘤的监控能力,从而提高抗肿瘤治疗的效果。此外,结合传统中医药的治疗方法也显示出降低MDSCs比例的潜力。

尽管已有研究取得了一定进展,但相关靶向药物的毒副作用仍较难避免,仍需进一步探讨MDSCs与TGF-β1的具体作用机制,以优化治疗策略并推动其在临床中的应用。未来的研究应关注MDSCs的不同亚群及其在肿瘤微环境中的功能,探索新的靶向药物和联合治疗方案,以期提高结直肠癌患者的生存率和生活质量。

NOTES

*通讯作者。

参考文献

[1] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[2] 姜潇. 新型结直肠癌生物标志物在诊断中的作用[D]: [博士学位论文]. 大连: 大连理工大学, 2019.
[3] 张倩. 激活突变SHP2E76K酪氨酸磷酸酶对结直肠癌发生发展的影响及其分子机制研究[D]: [博士学位论文]. 合肥: 安徽医科大学, 2018.
[4] 漆家康. 结直肠癌患者手术标本中AIM2表达情况及其与临床病理资料关系的研究[D]: [硕士学位论文]. 泸州: 西南医科大学, 2018.
[5] Mojsilovic, S., Mojsilovic, S.S., Bjelica, S. and Santibanez, J.F. (2021) Transforming Growth Factor‐Beta1 and Myeloid‐Derived Suppressor Cells: A Cancerous Partnership. Developmental Dynamics, 251, 85-104.
https://doi.org/10.1002/dvdy.339
[6] Waldner, M.J. and Neurath, M.F. (2023) TGFβ and the Tumor Microenvironment in Colorectal Cancer. Cells, 12, Article 1139.
https://doi.org/10.3390/cells12081139
[7] Zhang, H., Li, Z., Wang, L., Tian, G., Tian, J., Yang, Z., et al. (2017) Critical Role of Myeloid-Derived Suppressor Cells in Tumor-Induced Liver Immune Suppression through Inhibition of NKT Cell Function. Frontiers in Immunology, 8, Article 129.
https://doi.org/10.3389/fimmu.2017.00129
[8] Shang, A., Gu, C., Wang, W., Wang, X., Sun, J., Zeng, B., et al. (2020) Exosomal circPACRGL Promotes Progression of Colorectal Cancer via the miR-142-3p/miR-506-3p-TGF-β1 Axis. Molecular Cancer, 19, Article No. 117.
https://doi.org/10.1186/s12943-020-01235-0
[9] Lan, X., Wei, D., Fang, L., Wu, X. and Wu, B. (2024) Tumor-associated Macrophage-Derived TGF-β1 Activates GLI2 via the Smad2/3 Signaling Pathway to Affect Cisplatin Resistance in Lung Adenocarcinoma. Technology in Cancer Research & Treatment, 23.
https://doi.org/10.1177/15330338241274337
[10] Bodogai, M., Moritoh, K., Lee-Chang, C., Hollander, C.M., Sherman-Baust, C.A., Wersto, R.P., et al. (2015) Immunosuppressive and Prometastatic Functions of Myeloid-Derived Suppressive Cells Rely Upon Education from Tumor-Associated B Cells. Cancer Research, 75, 3456-3465.
https://doi.org/10.1158/0008-5472.can-14-3077
[11] Ozawa, Y., Koh, Y., Shibaki, R., Harutani, Y., Akamatsu, H., Hayata, A., et al. (2024) Uncovering the Role of Tumor cGAS Expression in Predicting Response to PD-1/L1 Inhibitors in Non-Small Cell Lung Cancer. Cancer Immunology, Immunotherapy, 74, Article No. 7.
https://doi.org/10.1007/s00262-024-03861-9
[12] Fu, J., Li, G., Li, X., Song, S., Cheng, L., Rui, B., et al. (2024) Gut Commensal Alistipes as a Potential Pathogenic Factor in Colorectal Cancer. Discover Oncology, 15, Article No. 473.
https://doi.org/10.1007/s12672-024-01393-3
[13] Mohammed, O.A., Youssef, M.E., Hamad, R.S., Abdel-Reheim, M.A., Saleh, L.A., Alamri, M.M.S., et al. (2024) Unlocking Vinpocetine’s Oncostatic Potential in Early-Stage Hepatocellular Carcinoma: A New Approach to Oncogenic Modulation by a Nootropic Drug. PLOS ONE, 19, e0312572.
https://doi.org/10.1371/journal.pone.0312572
[14] Jamialahmadi, H., Nazari, S.E., TanzadehPanah, H., Saburi, E., Asgharzadeh, F., Khojasteh-Leylakoohi, F., et al. (2023) Targeting Transforming Growth Factor Beta (TGF-β) Using Pirfenidone, a Potential Repurposing Therapeutic Strategy in Colorectal Cancer. Scientific Reports, 13, Article No. 14357.
https://doi.org/10.1038/s41598-023-41550-2
[15] Sanchez-Pino, M.D., Dean, M.J. and Ochoa, A.C. (2021) Myeloid-Derived Suppressor Cells (MDSC): When Good Intentions Go Awry. Cellular Immunology, 362, Article 104302.
https://doi.org/10.1016/j.cellimm.2021.104302
[16] Bronte, V., Brandau, S., Chen, S., Colombo, M.P., Frey, A.B., Greten, T.F., et al. (2016) Recommendations for Myeloid-Derived Suppressor Cell Nomenclature and Characterization Standards. Nature Communications, 7, Article No. 12150.
https://doi.org/10.1038/ncomms12150
[17] 孙健, 张继明. 髓源性抑制细胞研究进展[J]. 微生物与感染, 2022, 17(6): 386-394.
[18] Wu, Y., Yi, M., Niu, M., Mei, Q. and Wu, K. (2022) Myeloid-Derived Suppressor Cells: An Emerging Target for Anticancer Immunotherapy. Molecular Cancer, 21, Article No. 184.
https://doi.org/10.1186/s12943-022-01657-y
[19] 胡桃, 冯正权. MDSCs与免疫逃逸及中医药治疗的研究进展[J]. 江西中医药大学学报, 2015, 27(3): 117-120, 124.
[20] Zeng, W., Liu, H., Mao, Y., Jiang, S., Yi, H., Zhang, Z., et al. (2024) Myeloid-Derived Suppressor Cells: Key Immunosuppressive Regulators and Therapeutic Targets in Colorectal Cancer (Review). International Journal of Oncology, 65, Article No. 85.
https://doi.org/10.3892/ijo.2024.5673
[21] 邓婉萍, 孙君重. MDSCs的功能研究新发现[J]. 临床肿瘤学杂志, 2015, 20(5): 474-477.
[22] Yang, Z., Zuo, H., Hou, Y., Zhou, S., Zhang, Y., Yang, W., et al. (2024) Dual Oxygen‐Supply Immunosuppression‐Inhibiting Nanomedicine to Avoid the Intratumoral Recruitment of Myeloid‐Derived Suppressor Cells. Small, 20, Article ID: 2406860.
https://doi.org/10.1002/smll.202406860
[23] 漆家康. 结直肠癌患者手术标本中AIM2表达情况及其与临床病理资料关系的研究[D]: [硕士学位论文]. 泸州: 西南医科大学, 2018.
[24] Deng, S., Cheng, D., Wang, J., Gu, J., Xue, Y., Jiang, Z., et al. (2023) MYL9 Expressed in Cancer-Associated Fibroblasts Regulate the Immune Microenvironment of Colorectal Cancer and Promotes Tumor Progression in an Autocrine Manner. Journal of Experimental & Clinical Cancer Research, 42, Article No. 294.
https://doi.org/10.1186/s13046-023-02863-2
[25] Tao, B., Yi, C., Ma, Y., Li, Y., Zhang, B., Geng, Y., et al. (2023) A Novel TGF-β-Related Signature for Predicting Prognosis, Tumor Microenvironment, and Therapeutic Response in Colorectal Cancer. Biochemical Genetics, 62, 2999-3029.
https://doi.org/10.1007/s10528-023-10591-7
[26] Fu, M., Li, Q., Qian, H., Min, X., Yang, H., Liu, Z., et al. (2024) Exendin-4 Intervention Attenuates Atherosclerosis Severity by Modulating Myeloid-Derived Suppressor Cells and Inflammatory Cytokines in ApoE-/- Mice. International Immunopharmacology, 140, Article 112844.
https://doi.org/10.1016/j.intimp.2024.112844
[27] 陈雪, 王成磊, 杨冰炜, 等. 芍药汤调控MDSCs相关免疫抑制微环境防治慢性肠炎癌变的效应机制[J]. 中国实验方剂学杂志, 2025, 31(1): 10-19.
[28] 褚雪镭. 基于肠道菌群-胆汁酸-免疫轴探讨养肝益中方防治结直肠癌肝转移的作用机制[D]: [博士学位论文]. 北京: 中国中医科学院, 2024.
[29] Liu, A., Yu, C., Qiu, C., Wu, Q., Huang, C., Li, X., et al. (2023) PRMT5 Methylating SMAD4 Activates TGF-β Signaling and Promotes Colorectal Cancer Metastasis. Oncogene, 42, 1572-1584.
https://doi.org/10.1038/s41388-023-02674-x
[30] 赵安东, 白克运, 尹悦. 十全大补汤联合FOLFOX方案治疗晚期结直肠癌术后的疗效及对患者血清TGF-β1、IL-17水平的影响[J]. 山东中医杂志, 2017, 36(8): 644-646.
[31] Calon, A., Espinet, E., Palomo-Ponce, S., Tauriello, D.V.F., Iglesias, M., Céspedes, M.V., et al. (2012) Dependency of Colorectal Cancer on a TGF-β-Driven Program in Stromal Cells for Metastasis Initiation. Cancer Cell, 22, 571-584.
https://doi.org/10.1016/j.ccr.2012.08.013
[32] Lu, J., Kornmann, M. and Traub, B. (2023) Role of Epithelial to Mesenchymal Transition in Colorectal Cancer. International Journal of Molecular Sciences, 24, Article 14815.
https://doi.org/10.3390/ijms241914815
[33] Minini, M. and Fouassier, L. (2023) Cancer-Associated Fibroblasts and Extracellular Matrix: Therapeutical Strategies for Modulating the Cholangiocarcinoma Microenvironment. Current Oncology, 30, 4185-4196.
https://doi.org/10.3390/curroncol30040319
[34] 张小艺. TGF-β1、PDGF-B在TLR4信号通路中作用的研究[D]: [硕士学位论文]. 贵阳: 贵州大学, 2015.
[35] Fasano, M., Pirozzi, M., Miceli, C.C., Cocule, M., Caraglia, M., Boccellino, M., et al. (2024) TGF-β Modulated Pathways in Colorectal Cancer: New Potential Therapeutic Opportunities. International Journal of Molecular Sciences, 25, Article 7400.
https://doi.org/10.3390/ijms25137400
[36] Liu, C., Zhang, W., Wang, J., Si, T. and Xing, W. (2021) Tumor‐Associated Macrophage‐Derived Transforming Growth Factor‐β Promotes Colorectal Cancer Progression through HIF1‐TRIB3 Signaling. Cancer Science, 112, 4198-4207.
https://doi.org/10.1111/cas.15101
[37] Rodríguez‐García, A., Samsó, P., Fontova, P., Simon‐Molas, H., Manzano, A., Castaño, E., et al. (2017) TGF‐β1 Targets Smad, p38 MAPK, and PI3K/Akt Signaling Pathways to Induce PFKFB3 Gene Expression and Glycolysis in Glioblastoma Cells. The FEBS Journal, 284, 3437-3454.
https://doi.org/10.1111/febs.14201
[38] Ungefroren, H., Witte, D. and Lehnert, H. (2017) The Role of Small GTPases of the Rho/Rac Family in TGF‐β‐Induced EMT and Cell Motility in Cancer. Developmental Dynamics, 247, 451-461.
https://doi.org/10.1002/dvdy.24505
[39] MacDonald, W.J., Verschleiser, B., Carlsen, L., Huntington, K.E., Zhou, L. and El-Deiry, W.S. (2023) Broad Spectrum Integrin Inhibitor GLPG-0187 Bypasses Immune Evasion in Colorectal Cancer by TGF-β Signaling Mediated Downregulation of PD-L1. American Journal of Cancer Research, 13, 2938-2947.
[40] Thomas, D.A. and Massagué, J. (2005) TGF-β Directly Targets Cytotoxic T Cell Functions during Tumor Evasion of Immune Surveillance. Cancer Cell, 8, 369-380.
https://doi.org/10.1016/j.ccr.2005.10.012
[41] Gorelik, L. and Flavell, R.A. (2002) Transforming Growth Factor-β in T-Cell Biology. Nature Reviews Immunology, 2, 46-53.
https://doi.org/10.1038/nri704
[42] Shin, S.H., Lee, Y.E., Yoon, H., Yuk, C.M., An, J.Y., Seo, M., et al. (2025) An Innovative Strategy Harnessing Self-Activating CAR-NK Cells to Mitigate TGF-β1-Driven Immune Suppression. Biomaterials, 314, Article 122888.
https://doi.org/10.1016/j.biomaterials.2024.122888
[43] Guo, Y., Hu, C., Cai, K., Long, G., Cai, D., Yu, Z., et al. (2024) KRAS Inhibitors May Prevent Colorectal Cancer Metachronous Metastasis by Suppressing TGF-β Mediated Epithelial-Mesenchymal Transition. Molecular Medicine Reports, 31, Article No. 24.
https://doi.org/10.3892/mmr.2024.13389
[44] 邵建富, 李兴海, 马文杰, 等. 胃癌患者组织中TGF-α、TGF-β1和miR-302a的表达及其与胃癌的相关性研究[J]. 现代消化及介入诊疗, 2020, 25(5): 629-633.
[45] Batlle, E. and Massagué, J. (2019) Transforming Growth Factor-β Signaling in Immunity and Cancer. Immunity, 50, 924-940.
https://doi.org/10.1016/j.immuni.2019.03.024
[46] Lee, C., Lee, W., Cho, S. and Park, S. (2018) Characterization of Multiple Cytokine Combinations and TGF-β on Differentiation and Functions of Myeloid-Derived Suppressor Cells. International Journal of Molecular Sciences, 19, Article 869.
https://doi.org/10.3390/ijms19030869
[47] 吴端. 体内外研究18β-甘草次酸对MDSCs免疫抑制功能的影响[D]: [硕士学位论文]. 厦门: 厦门大学, 2014.
[48] Ruixin, S., Yifan, L., Yansha, S., Min, Z., Yiwei, D., Xiaoli, H., et al. (2024) Dual Targeting Chimeric Antigen Receptor Cells Enhance Antitumour Activity by Overcoming T Cell Exhaustion in Pancreatic Cancer. British Journal of Pharmacology, 181, 4628-4646.
https://doi.org/10.1111/bph.16505
[49] Lasser, S.A., Ozbay Kurt, F.G., Arkhypov, I., Utikal, J. and Umansky, V. (2024) Myeloid-Derived Suppressor Cells in Cancer and Cancer Therapy. Nature Reviews Clinical Oncology, 21, 147-164.
https://doi.org/10.1038/s41571-023-00846-y
[50] 吕川. MSC旁分泌TGF-β通过ERK1/2信号通路诱导黑色素瘤EMT的作用研究[D]: [博士学位论文]. 上海: 中国人民解放军海军军医大学, 2020.
[51] Marvel, D. and Gabrilovich, D.I. (2015) Myeloid-Derived Suppressor Cells in the Tumor Microenvironment: Expect the Unexpected. Journal of Clinical Investigation, 125, 3356-3364.
https://doi.org/10.1172/jci80005
[52] Kim, B.-G., Malek, E., Choi, S.H., Ignatz-Hoover, J.J. and Driscoll, J.J. (2021) Novel Therapies Emerging in Oncology to Target the TGF-β Pathway. Journal of Hematology & Oncology, 14, Article No. 55.
https://doi.org/10.1186/s13045-021-01053-x
[53] Jayaraman, P., Parikh, F., Newton, J.M., Hanoteau, A., Rivas, C., Krupar, R., et al. (2018) TGF-β1 Programmed Myeloid-Derived Suppressor Cells (MDSC) Acquire Immune-Stimulating and Tumor Killing Activity Capable of Rejecting Established Tumors in Combination with Radiotherapy. OncoImmunology, 7, e1490853.
https://doi.org/10.1080/2162402x.2018.1490853
[54] Zhang, F., Dong, W., Zeng, W., Zhang, L., Zhang, C., Qiu, Y., et al. (2016) Naringenin Prevents TGF-β1 Secretion from Breast Cancer and Suppresses Pulmonary Metastasis by Inhibiting PKC Activation. Breast Cancer Research, 18, Article No. 38.
https://doi.org/10.1186/s13058-016-0698-0
[55] 杨萍芬, 牛艳芬. TGF-β1/Smad信号通路在组织纤维化中的研究进展[J]. 国际药学研究杂志, 2019, 46(10): 738-744.
[56] Yi, Q., Zhu, G., Zhu, W., Wang, J., Ouyang, X., Yang, K., et al. (2024) Oncogenic Mechanisms of COL10A1 in Cancer and Clinical Challenges (Review). Oncology Reports, 52, Article No. 162.
https://doi.org/10.3892/or.2024.8821
[57] Yang, Z., Guo, J., Weng, L., Tang, W., Jin, S. and Ma, W. (2020) Myeloid-Derived Suppressor Cells—New and Exciting Players in Lung Cancer. Journal of Hematology & Oncology, 13, Article No. 10.
https://doi.org/10.1186/s13045-020-0843-1
[58] Sánchez-León, M.L., Jiménez-Cortegana, C., Silva Romeiro, S., Garnacho, C., de la Cruz-Merino, L., García-Domínguez, D.J., et al. (2023) Defining the Emergence of New Immunotherapy Approaches in Breast Cancer: Role of Myeloid-Derived Suppressor Cells. International Journal of Molecular Sciences, 24, Article 5208.
https://doi.org/10.3390/ijms24065208
[59] Shojaei, F., Wu, X., Malik, A.K., Zhong, C., Baldwin, M.E., Schanz, S., et al. (2007) Tumor Refractoriness to Anti-VEGF Treatment Is Mediated by CD11b+Gr1+ Myeloid Cells. Nature Biotechnology, 25, 911-920.
https://doi.org/10.1038/nbt1323
[60] Mehta, A.R. and Armstrong, A.J. (2015) Tasquinimod in the Treatment of Castrate-Resistant Prostate Cancer—Current Status and Future Prospects. Therapeutic Advances in Urology, 8, 9-18.
https://doi.org/10.1177/1756287215603558
[61] Yuan, B., Clowers, M.J., Velasco, W.V., Peng, S., Peng, Q., Shi, Y., et al. (2022) Targeting IL-1β as an Immunopreventive and Therapeutic Modality for K-Ras-Mutant Lung Cancer. JCI Insight, 7, e157788.
https://doi.org/10.1172/jci.insight.157788
[62] Flores-Toro, J.A., Luo, D., Gopinath, A., Sarkisian, M.R., Campbell, J.J., Charo, I.F., et al. (2019) CCR2 Inhibition Reduces Tumor Myeloid Cells and Unmasks a Checkpoint Inhibitor Effect to Slow Progression of Resistant Murine Gliomas. Proceedings of the National Academy of Sciences, 117, 1129-1138.
https://doi.org/10.1073/pnas.1910856117
[63] Chiu, D.K., Tse, A.P., Xu, I.M., Di Cui, J., Lai, R.K., Li, L.L., et al. (2017) Hypoxia Inducible Factor HIF-1 Promotes Myeloid-Derived Suppressor Cells Accumulation through ENTPD2/CD39L1 in Hepatocellular Carcinoma. Nature Communications, 8, Article No. 517.
https://doi.org/10.1038/s41467-017-00530-7
[64] Zahran, A.M., Moeen, S.M., Thabet, A.F., Rayan, A., Abdel-Rahim, M.H., Mohamed, W.M.Y., et al. (2020) Monocytic Myeloid-Derived Suppressor Cells in Chronic Lymphocytic Leukemia Patients: A Single Center Experience. Leukemia & Lymphoma, 61, 1645-1652.
https://doi.org/10.1080/10428194.2020.1728747
[65] O’Mahony, C., Clooney, A., Clarke, S.F., Aguilera, M., Gavin, A., Simnica, D., et al. (2023) Dietary-Induced Bacterial Metabolites Reduce Inflammation and Inflammation-Associated Cancer via Vitamin D Pathway. International Journal of Molecular Sciences, 24, Article 1864.
https://doi.org/10.3390/ijms24031864
[66] Mirza, N., Fishman, M., Fricke, I., Dunn, M., Neuger, A.M., Frost, T.J., et al. (2006) All-trans-Retinoic Acid Improves Differentiation of Myeloid Cells and Immune Response in Cancer Patients. Cancer Research, 66, 9299-9307.
https://doi.org/10.1158/0008-5472.can-06-1690
[67] Lu, P., Yu, B. and Xu, J. (2012) Cucurbitacin B Regulates Immature Myeloid Cell Differentiation and Enhances Antitumor Immunity in Patients with Lung Cancer. Cancer Biotherapy and Radiopharmaceuticals, 27, 495-503.
https://doi.org/10.1089/cbr.2012.1219
[68] Roberts, L.M., Perez, M.J., Balogh, K.N., Mingledorff, G., Cross, J.V. and Munson, J.M. (2022) Myeloid Derived Suppressor Cells Migrate in Response to Flow and Lymphatic Endothelial Cell Interaction in the Breast Tumor Microenvironment. Cancers, 14, Article 3008.
https://doi.org/10.3390/cancers14123008
[69] Li, F., Zhao, Y., Wei, L., Li, S. and Liu, J. (2018) Tumor-Infiltrating Treg, MDSC, and IDO Expression Associated with Outcomes of Neoadjuvant Chemotherapy of Breast Cancer. Cancer Biology & Therapy, 19, 695-705.
https://doi.org/10.1080/15384047.2018.1450116
[70] Christmas, B.J., Rafie, C.I., Hopkins, A.C., Scott, B.A., Ma, H.S., Cruz, K.A., et al. (2018) Entinostat Converts Immune-Resistant Breast and Pancreatic Cancers into Checkpoint-Responsive Tumors by Reprogramming Tumor-Infiltrating Mdscs. Cancer Immunology Research, 6, 1561-1577.
https://doi.org/10.1158/2326-6066.cir-18-0070
[71] Orillion, A., Hashimoto, A., Damayanti, N., Shen, L., Adelaiye-Ogala, R., Arisa, S., et al. (2017) Entinostat Neutralizes Myeloid-Derived Suppressor Cells and Enhances the Antitumor Effect of PD-1 Inhibition in Murine Models of Lung and Renal Cell Carcinoma. Clinical Cancer Research, 23, 5187-5201.
https://doi.org/10.1158/1078-0432.ccr-17-0741
[72] Tang, Y., Zhou, C., Li, Q., Cheng, X., Huang, T., Li, F., et al. (2022) Targeting Depletion of Myeloid-Derived Suppressor Cells Potentiates PD-L1 Blockade Efficacy in Gastric and Colon Cancers. OncoImmunology, 11, Article 2131084.
https://doi.org/10.1080/2162402x.2022.2131084
[73] Kim, R., Hashimoto, A., Markosyan, N., Tyurin, V.A., Tyurina, Y.Y., Kar, G., et al. (2022) Ferroptosis of Tumour Neutrophils Causes Immune Suppression in Cancer. Nature, 612, 338-346.
https://doi.org/10.1038/s41586-022-05443-0
[74] Zhao, Y., Lian, J., Lan, Z., Zou, K., Wang, W. and Yu, G. (2021) Ferroptosis Promotes Anti‐Tumor Immune Response by Inducing Immunogenic Exposure in Hnscc. Oral Diseases, 29, 933-941.
https://doi.org/10.1111/odi.14077
[75] Vincent, J., Mignot, G., Chalmin, F., Ladoire, S., Bruchard, M., Chevriaux, A., et al. (2010) 5-Fluorouracil Selectively Kills Tumor-Associated Myeloid-Derived Suppressor Cells Resulting in Enhanced T Cell-Dependent Antitumor Immunity. Cancer Research, 70, 3052-3061.
https://doi.org/10.1158/0008-5472.can-09-3690
[76] Ko, J.S., Zea, A.H., Rini, B.I., Ireland, J.L., Elson, P., Cohen, P., et al. (2009) Sunitinib Mediates Reversal of Myeloid-Derived Suppressor Cell Accumulation in Renal Cell Carcinoma Patients. Clinical Cancer Research, 15, 2148-2157.
https://doi.org/10.1158/1078-0432.ccr-08-1332
[77] Xu, H., Russell, S.N., Steiner, K., O’Neill, E. and Jones, K.I. (2024) Targeting PI3K-Gamma in Myeloid Driven Tumour Immune Suppression: A Systematic Review and Meta-Analysis of the Preclinical Literature. Cancer Immunology, Immunotherapy, 73, Article No. 204.
https://doi.org/10.1007/s00262-024-03779-2
[78] Qin, H., Lerman, B., Sakamaki, I., Wei, G., Cha, S.C., Rao, S.S., et al. (2014) Generation of a New Therapeutic Peptide That Depletes Myeloid-Derived Suppressor Cells in Tumor-Bearing Mice. Nature Medicine, 20, 676-681.
https://doi.org/10.1038/nm.3560
[79] Wang, H., Liu, R., Yu, Y., Xue, H., Shen, R., Zhang, Y. and Ding, J. (2025) Effects of Cell Shape and Nucleus Shape on Epithelial-Mesenchymal Transition Revealed Using Chimeric Micropatterns. Biomaterials, 317, Article 123013.
https://doi.org/10.1016/j.biomaterials.2024.123013
[80] Deb, V.K., Chauhan, N. and Jain, U. (2025) Deciphering TGF-β1’s Role in Drug Resistance and Leveraging Plant Bioactives for Cancer Therapy. European Journal of Pharmacology, 988, Article 177218.
https://doi.org/10.1016/j.ejphar.2024.177218
[81] Oft, M., Heider, K. and Beug, H. (1998) TGFβ Signaling Is Necessary for Carcinoma Cell Invasiveness and Metastasis. Current Biology, 8, 1243-1252.
https://doi.org/10.1016/s0960-9822(07)00533-7
[82] Tian, Y., Gao, X., Yang, X., Chen, S. and Ren, Y. (2024) VEGFA Contributes to Tumor Property of Glioblastoma Cells by Promoting Differentiation of Myeloid-Derived Suppressor Cells. BMC Cancer, 24, Article No. 1040.
https://doi.org/10.1186/s12885-024-12803-8
[83] Bu, M.T., Chandrasekhar, P., Ding, L. and Hugo, W. (2022) The Roles of TGF-β and VEGF Pathways in the Suppression of Antitumor Immunity in Melanoma and Other Solid Tumors. Pharmacology & Therapeutics, 240, Article 108211.
https://doi.org/10.1016/j.pharmthera.2022.108211
[84] Dahmani, A. and Delisle, J. (2018) TGF-β in T Cell Biology: Implications for Cancer Immunotherapy. Cancers, 10, Article 194.
https://doi.org/10.3390/cancers10060194
[85] Tolcher, A.W., Berlin, J.D., Cosaert, J., Kauh, J., Chan, E., Piha-Paul, S.A., et al. (2017) A Phase 1 Study of Anti-TGFβ Receptor Type-II Monoclonal Antibody LY3022859 in Patients with Advanced Solid Tumors. Cancer Chemotherapy and Pharmacology, 79, 673-680.
https://doi.org/10.1007/s00280-017-3245-5
[86] Hu, Z., Gerseny, H., Zhang, Z., Chen, Y., Berg, A., Zhang, Z., et al. (2011) Oncolytic Adenovirus Expressing Soluble TGFβ Receptor II-Fc-Mediated Inhibition of Established Bone Metastases: A Safe and Effective Systemic Therapeutic Approach for Breast Cancer. Molecular Therapy, 19, 1609-1618.
https://doi.org/10.1038/mt.2011.114
[87] Lee, J.D., Hempel, N., Lee, N.Y. and Blobe, G.C. (2009) The Type III TGF-β Receptor Suppresses Breast Cancer Progression through GIPC-Mediated Inhibition of TGF-β Signaling. Carcinogenesis, 31, 175-183.
https://doi.org/10.1093/carcin/bgp271
[88] Hau, P., Jachimczak, P., Schlingensiepen, R., Schulmeyer, F., Jauch, T., Steinbrecher, A., et al. (2007) Inhibition of TGF-β2 with AP 12009 in Recurrent Malignant Gliomas: From Preclinical to Phase I/II Studies. Oligonucleotides, 17, 201-212.
https://doi.org/10.1089/oli.2006.0053
[89] Keedy, V.L., Bauer, T.M., Clarke, J.M., Hurwitz, H., Baek, I., Ha, I., et al. (2018) Association of TGF-β Responsive Signature with Anti-Tumor Effect of Vactosertib, a Potent, Oral TGF-β Receptor Type I (TGFBRI) Inhibitor in Patients with Advanced Solid Tumors. Journal of Clinical Oncology, 36, 3031-3031.
https://doi.org/10.1200/jco.2018.36.15_suppl.3031
[90] Yap, T.A., Vieito, M., Baldini, C., Sepúlveda-Sánchez, J.M., Kondo, S., Simonelli, M., et al. (2021) First-in-Human Phase I Study of a Next-Generation, Oral, TGFβ Receptor 1 Inhibitor, LY3200882, in Patients with Advanced Cancer. Clinical Cancer Research, 27, 6666-6676.
https://doi.org/10.1158/1078-0432.ccr-21-1504
[91] Ciardiello, D., Elez, E., Tabernero, J. and Seoane, J. (2020) Clinical Development of Therapies Targeting TGFβ: Current Knowledge and Future Perspectives. Annals of Oncology, 31, 1336-1349.
https://doi.org/10.1016/j.annonc.2020.07.009
[92] Lind, H., Gameiro, S.R., Jochems, C., Donahue, R.N., Strauss, J., Gulley, J.L., et al. (2020) Dual Targeting of TGF-β and PD-L1 via a Bifunctional Anti-PD-L1/TGF-βRII Agent: Status of Preclinical and Clinical Advances. Journal for ImmunoTherapy of Cancer, 8, e000433.
https://doi.org/10.1136/jitc-2019-000433
[93] Chang, W., Ragazzi, E., Liu, P. and Wu, S. (2020) Effective Block by Pirfenidone, an Antifibrotic Pyridone Compound (5-Methyl-1-Phenylpyridin-2[H-1]-One), on Hyperpolarization-Activated Cation Current: An Additional but Distinctive Target. European Journal of Pharmacology, 882, Article 173237.
https://doi.org/10.1016/j.ejphar.2020.173237
[94] Dione, M.N., Zhang, Q., Shang, S. and Lu, X. (2024) Transcriptomic Analysis of Blood Collagen-Induced Arthritis Mice Exposed to 0.1 THz Reveals Inhibition of Genes and Pathways Involved in Rheumatoid Arthritis. International Journal of Molecular Sciences, 25, Article 12812.
https://doi.org/10.3390/ijms252312812
[95] Wu, Q., Miao, X., Zhang, J., Xiang, L., Li, X., Bao, X., et al. (2021) Astrocytic YAP Protects the Optic Nerve and Retina in an Experimental Autoimmune Encephalomyelitis Model through TGF-β Signaling. Theranostics, 11, 8480-8499.
https://doi.org/10.7150/thno.60031
[96] Wu, B., Zhang, S., Guo, Z., Bi, Y., Zhou, M., Li, P., et al. (2021) The TGF-β Superfamily Cytokine Activin-A Is Induced during Autoimmune Neuroinflammation and Drives Pathogenic Th17 Cell Differentiation. Immunity, 54, 308-323.E6.
https://doi.org/10.1016/j.immuni.2020.12.010
[97] Gokavi, J., Sadawarte, S., Shelke, A., Kulkarni-Kale, U., Thakar, M. and Saxena, V. (2021) Inhibition of miR-155 Promotes TGF-β Mediated Suppression of HIV Release in the Cervical Epithelial Cells. Viruses, 13, Article 2266.
https://doi.org/10.3390/v13112266
[98] Ge, Q., Shi, Z., Zou, K., Ying, J., Chen, J., Yuan, W., et al. (2023) Protein Phosphatase PPM1A Inhibition Attenuates Osteoarthritis via Regulating TGF-β/Smad2 Signaling in Chondrocytes. JCI Insight, 8, e166688.
https://doi.org/10.1172/jci.insight.166688
[99] Blaney Davidson, E.N., van der Kraan, P.M. and van den Berg, W.B. (2007) TGF-β and Osteoarthritis. Osteoarthritis and Cartilage, 15, 597-604.
https://doi.org/10.1016/j.joca.2007.02.005
[100] Niu, B., Tian, T., Wang, L., Tian, Y., Tian, T., Guo, Y., et al. (2024) CCL9/CCR1 Axis-Driven Chemotactic Nanovesicles for Attenuating Metastasis of Smad4-Deficient Colorectal Cancer by Trapping TGF-β. Acta Pharmaceutica Sinica B, 14, 3711-3729.
https://doi.org/10.1016/j.apsb.2024.05.009
[101] Gneo, L., Rizkalla, N., Hejmadi, R., Mussai, F., de Santo, C. and Middleton, G. (2021) TGF-β Orchestrates the Phenotype and Function of Monocytic Myeloid-Derived Suppressor Cells in Colorectal Cancer. Cancer Immunology, Immunotherapy, 71, 1583-1596.
https://doi.org/10.1007/s00262-021-03081-5
[102] Lin, X., Xu, W., Shao, M., Fan, Q., Wen, G., Li, C., et al. (2015) Shenling Baizhu San Supresses Colitis Associated Colorectal Cancer through Inhibition of Epithelial-Mesenchymal Transition and Myeloid-Derived Suppressor Infiltration. BMC Complementary and Alternative Medicine, 15, Article No. 126.
https://doi.org/10.1186/s12906-015-0649-9
[103] 李敏艳. IL-36γ联合TGF-β抗体促进肿瘤免疫应答的效应与机制[D]: [硕士学位论文]. 苏州: 苏州大学, 2022.

Baidu
map