帕金森病吞咽障碍及其神经调控治疗的研究进展
Research Progress on Dysphagia and Neuroregulatory Therapy in Parkinson’s Disease
摘要: 帕金森病(Parkinson’s Disease, PD)是一种常见的神经退行性疾病,其特征在于运动和非运动症状,吞咽障碍作为一种常见症状,会造成患者药物摄入不足,营养不良,吸入性肺炎等并发症,显著降低患者生活质量。吞咽障碍通常出现在PD晚期,但近年来研究表明,其在PD早期也可能存在,并随病情进展而逐渐加重。PD患者的吞咽障碍机制复杂,涉及多个脑区和神经通路的功能障碍,包括皮质、皮质下、脑干和周围神经系统。目前,针对PD吞咽障碍的治疗方法有限,药物治疗效果不佳,而传统的康复训练效果也存在个体差异。近年来,神经调控技术作为一种新兴的治疗手段,为PD吞咽障碍的治疗带来了新的希望。本综述总结了PD吞咽障碍的流行病学、发病机制以及评估方法的最新研究进展。重点概述了近年来神经调控技术,例如重复经颅磁刺激(Repetitive Transcranial Magnetic Stimulation, rTMS)、经颅直流电刺激(Transcranial Direct Current Stimulation, tDCS)和脑深部电刺激(Deep Brain Stimulation, DBS)等在治疗PD吞咽障碍中的应用现状,并探讨了不同神经调控技术的潜在机制、疗效及安全性,旨在为优化PD患者吞咽障碍的诊疗策略提供科学依据,并为临床实践中有效管理PD患者的吞咽障碍提供参考。
Abstract: Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by both motor and non-motor symptoms. Dysphagia, as a frequent symptom, can lead to complications such as inadequate medication intake, malnutrition, and aspiration pneumonia, significantly reducing patients’ quality of life. While dysphagia typically manifests in late-stage PD, recent studies suggest its presence in early stages, with progressive worsening as the disease advances. The mechanism of dysphagia in PD patients is complex, involving functional impairments across multiple brain regions and neural pathways, including cortical, subcortical, brainstem, and peripheral nervous systems. Currently, treatment options for PD-related dysphagia are limited, with pharmacological interventions showing poor efficacy and traditional rehabilitation therapies yielding variable individual outcomes. In recent years, neuromodulation techniques have emerged as a promising therapeutic approach, offering new hope for treating dysphagia in PD. This review summarizes the latest research progress on the epidemiology, pathogenesis, and assessment methods of PD-related dysphagia. It focuses on the current applications of neuromodulation techniques, such as repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS), in treating PD-related dysphagia. The review also discusses the potential mechanisms, efficacy, and safety of various neuromodulation techniques, aiming to provide a scientific basis for optimizing diagnostic and treatment strategies for dysphagia in PD patients and to offer reference for effective management of dysphagia in clinical practice for PD patients.
文章引用:乌日丽格, 张春雨. 帕金森病吞咽障碍及其神经调控治疗的研究进展[J]. 临床个性化医学, 2025, 4(1): 959-967. https://doi.org/10.12677/jcpm.2025.41134

1. 帕金森病吞咽障碍概述

帕金森病(Parkinson Disease, PD)是第二大常见的神经退行性病变,同时也是神经致残性疾病之一,根据统计,受PD影响的患者人数从1990年的250万增加到2015年的620万,预计到2040年将达到1290万[1]。帕金森病主要症状包括静止性震颤,运动迟缓,肌张力增高等运动症状和自主神经功能障碍、神经精神症状等非运动症状。这些症状与黑质中多巴胺能神经元的逐渐丧失以及许多运动和非运动回路中α-突触核蛋白的沉积相关。吞咽障碍是PD的常见症状之一,因为功能性吞咽受多种躯体运动和自主感觉功能控制,且受一定的认知功能影响,所以在帕金森病患者中很常见,它也是常见的帕金森相关的胃肠道功能障碍[2]。研究显示PD吞咽障碍的发生率达30%至80%以上[3],然而不超过20%~40%的PD患者意识到他们的吞咽功能障碍,并且不超过10%的PD患者自发报告吞咽困难[4]。以前认为帕金森吞咽障碍会发生在疾病晚期阶段或运动症状发生后的10~15年[5],然而,通过纤维内镜吞咽评价(FEES)或视频荧光吞咽研究(VFSS)等仪器工具,已能够在超过50%的无主观症状的PD患者中检测到吞咽功能异常[6]。PD吞咽障碍的主要临床表现包括口中食物残留或从口中漏出,流涎、咳嗽,反流和吞咽后误吸[7]。帕金森病的吞咽障碍可以造成营养不良、药物摄入不足、吸入性肺炎等并发症,而且吸入性肺炎为发病5年的帕金森病患者急诊入院率最高的原因且为疾病晚期死亡的主要原因[8]。由于吞咽障碍与帕金森病病人的生活质量及生命安全直接相关,本文综述了PD相关吞咽障碍的发病机制、筛查诊断及神经调控治疗,从临床角度对PD吞咽障碍患者的有效管理提出了见解,以期提高各方对PD吞咽障碍诊治的重视。

2. 发病机制

帕金森病吞咽障碍的发生机制目前还不十分明确,目前研究显示多巴胺能和非多巴胺能机制均可能参与PD吞咽障碍的发生发展[7]

吞咽是一种复杂且刻板的顺序性运动事件,由多个不同的皮质及皮质下区域介导,这些区域的病变可导致吞咽困难。正常吞咽时双侧壳核和苍白球均被激活,意志性吞咽与基底神经节和额叶以及其他皮质结构密切相关,而帕金森病主要受多巴胺能基底神经节系统神经病理过程影响。因此,PD患者纹状体中多巴胺的缺乏可能损害这一吞咽网络[9]-[11]

此外,研究发现,PD的病理特征不仅局限于中枢神经系统,α-突触核蛋白的沉积也可在肠道神经系统(ENS)中发现,提示PD可能起源于肠道[12]。疾病首先在肠道和嗅球发病,并通过逆行传播影响脑干,进而导致胃肠功能障碍和吞咽功能受损[13]。路易体沉积不仅发生在黑质,还存在于多种非多巴胺能吞咽相关脑干区域,这些沉积可能损害顺序吞咽模式,导致吞咽障碍[7]

已有研究表明外周神经系统在帕金森病(PD)吞咽障碍的发病机制中扮演重要角色。Mu等人的研究发现α-突触核蛋白沉积不仅存在于部分周围感觉神经元,也存在于支配咽部肌肉的运动神经元中,且PD患者中,吞咽障碍组的α-突触核蛋白沉积更为显著[14] [15]。此外,伴有吞咽困难的PD患者咽部肌肉萎缩更明显,进一步支持外周神经肌肉病变参与PD吞咽障碍的发生发展[16]。这些发现提示,靶向外周神经机制的治疗策略可能为PD吞咽障碍的干预提供新的方向。

帕金森病(PD)患者的吞咽困难可能与P物质(Substance P, SP)的水平变化有关。SP是一种广泛分布的神经肽,在吞咽反射中发挥神经递质作用[17],通过介导咽黏膜对刺激的反应来增强吞咽和咳嗽反射。Schröder等人的研究[18]表明,SP水平降低与PD患者吞咽困难的发生发展密切相关。此外,其他研究[19]也发现,PD患者唾液中SP浓度显著低于无吞咽困难的PD患者。这些研究结果提示,SP可能在PD相关吞咽困难的病理机制中扮演重要角色。然而,需要进一步研究来明确SP与PD吞咽困难之间的因果关系。

3. 诊断

PD相关吞咽障碍的诊断需要结合临床评估、问卷调查和影像学检查。

3.1. 评估问卷筛查

目前应用的PD特异性吞咽障碍评估问卷有慕尼黑帕金森病吞咽障碍测试(MDT-PD)和标准化的吞咽障碍问卷(SDQ)。它们能确定PD相关吞咽困难的敏感性分别为81.3%和80.5%,特异性分别为71%和82% [20] [21]。MDT-PD作为一种有效的筛查工具,可用于早期诊断PD患者的吞咽困难,并初步分级其误吸严重程度[20]。MDT-PD在临床实践中得到了较好的应用,其中文版也已验证具有良好的信效度[22]。SDQ是专门针对PD患者设计并证明有效的问卷,且可检测到早期吞咽困难。该量表简短有效,适用于PD患者的随诊管理[21]。此外,帕金森病吞咽临床评估评分(SCAS-PD),也可评估PD患者的吞咽困难,它可用于识别吞咽的口腔和咽部阶段的变化[23]

近年来,研究人员积极开发和验证其他评估PD吞咽障碍的有效量表。例如,Dagna等人验证了多发性硬化吞咽障碍问卷(Dysphagia in Multiple Sclerosis, DYMUS)应用于PD患者吞咽障碍的有效性[24],研究表明DYMUS可可靠地检测PD患者的吞咽障碍。[25]。另外针对于PD患者设计开发的ROMP是评估帕金森病及帕金森综合征患者语言、吞咽及唾液控制的量表,经研究验证,该量表也可识别PD吞咽困难[26]

3.2. 临床吞咽检查

对于吞咽障碍患者,饮水试验应简单且易观察,在神经内科疾病中为常见床旁评估手段。饮水吞咽试验(WST)可在PD早期检测吞咽困难[27],并可识别有误吸风险的个体[28]。然而,WST的敏感度不高,可能会低估口咽吞咽困难的发生率,此外,单纯依靠吞水速度作为筛查标准不可靠,因为其易受主观因素影响,误差较大[29]。因此,更可靠的指标应为评估患者可承受的最大吞咽体积。研究表明,最大吞咽量低于20 ml的PD患者,其吞咽障碍发生率较高[11]

3.3. 仪器评估

对于吞咽障碍,有效且准确的仪器评估是有必要的,它不仅能够早期诊断吞咽障碍,还能对吞咽障碍的性质及阶段进行评估。电视透视吞咽功能检查(Video Fluoroscopic Swallowing Study, VFSS)及吞咽纤维内镜检查(Fiberoptic Endoscopic Evaluation of Swallowing, FEES)被认为是吞咽障碍评估的金标准。它们都能够以相近的相似度和特异度评估PD患者残留误吸风险[26]

FESS用FEES评价PD吞咽功能,可将咽喉部结构及其功能在吞咽期间和之后直接可视化,发现PD患者有无过早溢出、吞咽后残留物、渗漏误吸等问题[30]。可获得吞咽效率性及安全性受损的频率和严重程度等功能性吞咽过程的详细信息[31]

VFSSVFSS是诊断气道侵犯的金标准[26] [32],对于评估PD吞咽障碍也是有效筛查手段。VFSS在吞咽功能评估中能够完整和动态地评估所有吞咽过程,包括隐性误吸[33]。PD患者通过VFSS检查,在口腔期,可注意到异常的食团形成、舌上的残留物和零碎吞咽。在咽期,可观察到咽运动障碍、咽停留和吞咽后的谷残留物[7]。所以对于PD吞咽障碍的评估及后期干预治疗更具备指导意义。

HRM:高分辨率测压(HRM)是一种标准化的临床工具,它可得到具有高分辨率时间、空间客观压力数据,能够确定吞咽异常患者吞咽压力的客观变化[34]。研究表明,HRM可以通过比较吞咽压力、咽部运动学和吞咽自我评估在PD的早期阶段,在VFSS结果之前且无明显吞咽困难症状和体征时即发现患者吞咽相关压力和时间的细微变化。

肌电图:肌电图(EMG)已成为一种评估吞咽障碍患者吞咽肌肉生理功能的可靠的非侵入性临床工具[35],肌电图在神经源性吞咽障碍的诊断中,不仅可以评估随时间变化的吞咽肌活动的改变,也可以为其治疗策略提供依据[36]。研究表明,PD患者的EMG显示与健康对照组相比,其吞咽肌肉活动有延长[37]

3.4. 预测因素

帕金森病吞咽困难的早期诊断,临床预测因素也不能忽视,对于有针对性的筛查诊断是很有意义的。有研究表明,H-Y 4或5期、体重减轻、流涎、疾病持续时间、高龄、男性、合并痴呆可以预测帕金森病合并吞咽障碍的存在[4] [5] [26] [38]。Claus等的研究表明,年龄 > 63.5岁且每日左旋多巴等效剂量 > 475 mg的患者存在咽部吞咽障碍的风险较高。姿势不稳和步态障碍为主(Postural Instability and Gait Disorder Dominant, PIGD)亚型因明显的口咽肌肉运动失调等原因也可为吞咽障碍的预测因素[4]。除此之外,其他相关因素及生物标志物研究也在开展中,以期可以增加PD吞咽障碍早期筛查的进行及预后预测。

4. 治疗

帕金森病吞咽障碍的治疗提倡早期、长期、个体化治疗。多年来开发并研究了多种干预治疗措施,可改善吞咽障碍患者吞咽结构、反射、功能。

4.1. 常规治疗

众所周知,目前帕金森病一线治疗措施主要是药物。多巴胺能药物,特别是左旋多巴,是目前对于帕金森病运动症状最有效的药物[39],且多项研究仍认为左旋多巴能改善PD吞咽障碍[40]。除此之外,目前也有研究探究其他帕金森病治疗药物对吞咽障碍的治疗效果,Hirano等研究了罗替戈汀透皮贴剂对于PD吞咽障碍的疗效表明,因其持续的多巴胺能刺激,对于吞咽功能疗效方面较左旋多巴组更持续有效[41]。还有研究评估了雷沙吉兰对于帕金森病吞咽障碍的治疗效果表明其有效性[42]。另外,对于吞咽障碍,吞咽康复也是治疗的重要部分。目前对PD吞咽障碍有呼气肌力量训练(Expiratory Muscle Strength Training, EMST)、Lee-Silverman语音治疗(LSVT)、视频辅助吞咽疗法(Video-Assisted Swallowing Therapy, VAST)等针对性康复手段。吞咽与呼吸是相互影响的生理过程,在帕金森病患者中,由于呼吸运动相关肌肉逐渐僵硬,会影响呼吸功能。因此,加强呼气肌功能锻炼是吞咽康复的必要条件。研究证实,帕金森病患者中,EMST可有效减少误吸和残留,从而提高吞咽的安全性和效率[43]。LSVT主要通过对患者进行呼吸控制训练、增强患者发声运动能力等方式去改善吞咽功能。Miles等针对PD患者吞咽障碍进行的研究表明,其有益于吞咽安全性和有效性的改善,且有长期疗效。帕金森病患者吞咽运动的协调及执行功能受损,难以通过整合同时发生的本体感觉信号与视觉信息以指导运动而导致吞咽障碍。通过VAST可视化患者的病理性吞咽模式,反馈并纠正吞咽过程,从而达到治疗目的。在认知功能完整的PD伴吞咽障碍患者中,VAST可明显减少咽部残留,并有效改善吞咽相关生活质量[44]

4.2. 神经调控治疗

对于帕金森病,尤其对于药物治疗效果差且较晚期的患者,神经调控作为非药物干预手段,已成为PD治疗的重要方法,神经调控治疗包括侵入性及非侵入性两类技术。侵入式技术主要涵盖脑深部电刺激(DBS)和神经核团毁损术等,而非侵入式技术则主要包括重复经颅磁刺激(rTMS)、经颅直流电刺激(tDCS)等。这些技术能有效缓解PD的多种运动和非运动症状,且不良反应发生率低,显著提高患者的生活质量,随着研究的深入,这些技术也逐渐应用于帕金森病的吞咽障碍治疗中。

4.2.1. 侵入性神经调控治疗

DBSDBS是在脑内特定靶点进行高频电刺激,从而调节相应核团兴奋性。目前研究认为DBS可能通过影响膜电位动力学和离子通道功能而改变神经元电活动,影响神经递质释放及突触间信号传递等途径,进而影响整个神经网络从而发挥作用[45] [46]。已知DBS可改善PD患者的肢体和整体运动控制,口腔力量和某些发声能力。关于DBS对于PD吞咽障碍的研究,大部分研究结果表明,DBS治疗后对于PD吞咽障碍有显著改善,尤其是对于药物治疗效果不佳的晚期PD患者。关于可改善吞咽障碍的刺激靶点,多数研究使用双侧靶点,只有少部分是单侧或混合靶点,因为双侧DBS更可能影响轴性症状,包括吞咽困难。其中,GPi (苍白球内侧核)-DBS更有利于吞咽功能的改善。考虑到对吞咽功能的不同影响,可能与DBS靶部位大小及其与皮质延髓束毗邻程度的差异有关[47]。另外对于改善PD吞咽障碍的DBS的刺激强度方面,Tao Xie等人通过评估60 Hz的低频刺激与常规的130 Hz的高频刺激相比发现,60 Hz DBS的低刺激频率可改善吞咽功能[48]。由此推断,低频脑深部电刺激疗法对于改善PD吞咽障碍是有益的,但仍需大样本量随机临床试验去验证并研究其有效参数及靶点,目前,DBS治疗PD吞咽障碍通常采用联合治疗方案,例如将DBS与药物治疗和言语治疗等相结合,以期获得最佳的治疗效果。靶点选择、刺激参数和联合治疗方案的优化仍需进一步研究。

4.2.2. 非侵入性神经调控治疗

rTMS重复经颅磁刺激(rTMS)通过经颅磁场刺激诱导大脑皮层兴奋性变化,其作用机制是通过调节大脑皮层兴奋与抑制之间的平衡,从而促进神经可塑性。高频rTMS (≥5 Hz)诱导皮层兴奋,低频rTMS (≤1 Hz)诱导皮层抑制。rTMS已被证实可有效改善帕金森病(PD)的多种运动和非运动症状[49],且在卒中后吞咽障碍的治疗中也显示出疗效[50]。虽然针对PD吞咽障碍的rTMS研究相对较少,但已有研究表明其具有治疗潜力。Khedr等人的一项33例PD患者的双盲随机对照研究显示,高频rTMS可改善PD吞咽障碍[49]。黄佩玲等人的研究则进一步利用功能性磁共振成像技术探讨了rTMS的作用机制,结果提示rTMS可能通过增强尾状核和海马旁回的激活来改善患者的主观吞咽感觉[51]

综上所述,rTMS 作为一种安全、无创的神经调控技术,在PD吞咽障碍的治疗中具有显著的发展潜力,但仍需进一步的大规模临床试验来验证其疗效和最佳参数。

tDCS近年来,经颅直流电刺激(tDCS)应用于卒中患者吞咽功能障碍显示可有效改善吞咽功能、降低渗漏误吸风险。tDCS通过调节神经元膜电位极化状态来改变大脑皮层兴奋性,并诱导神经可塑性变化。tDCS的神经机制涉及神经递质系统,是一个钙依赖性过程。tDCS已被证实可有效改善卒中患者的吞咽功能障碍,并降低误吸风险[52]。在帕金森病(PD)吞咽障碍的治疗中,tDCS也显示出一定的治疗潜力。Dashtelei等人的研究表明,将间歇性阳极tDCS与常规吞咽治疗联合应用,可以改善PD患者的吞咽功能和生活质量[53]

然而,目前关于tDCS治疗PD吞咽障碍的研究仍相对有限,主要为小型交叉或随机对照研究。未来需要更大规模、更严格设计的临床试验来进一步验证tDCS的疗效、最佳参数以及其在PD吞咽障碍治疗中的临床应用价值。

5. 总结与展望

帕金森病的吞咽障碍需要引起足够的关注及重视,尽可能在疾病初始阶段即进行有效筛查干预,降低吸入性肺炎等并发症的发生发展,这对于帕金森病的长期有效管理意义重大。对此,需要进一步了解帕金森病相关吞咽障碍的特征及机制,明确其生理及临床标志物,根据相关临床数据评定风险因素,及早进行系统规范的筛查评估,并尽早进行有效的干预治疗对于维持及改善帕金森病患者生活质量尤为重要。帕金森病吞咽障碍的神经调控治疗需要更深入而广泛地研究,探究对吞咽障碍有益的治疗靶点、刺激参数、刺激模式,结合常规疗法,提供长期个体化及有效的联合治疗方案。

NOTES

*通讯作者。

参考文献

[1] De Miranda, B.R., Goldman, S.M., Miller, G.W., Greenamyre, J.T. and Dorsey, E.R. (2022) Preventing Parkinson’s Disease: An Environmental Agenda. Journal of Parkinsons Disease, 12, 45-68.
https://doi.org/10.3233/jpd-212922
[2] Rudisch, D.M., Krasko, M.N., Burdick, R., Broadfoot, C.K., Rogus-Pulia, N. and Ciucci, M.R. (2023) Dysphagia in Parkinson Disease: Part I—Pathophysiology and Diagnostic Practices. Current Physical Medicine and Rehabilitation Reports, 11, 176-187.
https://doi.org/10.1007/s40141-023-00392-9
[3] Ding, X., Gao, J., Xie, C., Xiong, B., Wu, S., Cen, Z., et al. (2017) Prevalence and Clinical Correlation of Dysphagia in Parkinson Disease: A Study on Chinese Patients. European Journal of Clinical Nutrition, 72, 82-86.
https://doi.org/10.1038/ejcn.2017.100
[4] Claus, I., Muhle, P., Suttrup, J., Labeit, B., Suntrup-Krueger, S., Dziewas, R., et al. (2020) Predictors of Pharyngeal Dysphagia in Patients with Parkinson’s Disease. Journal of Parkinson’s Disease, 10, 1727-1735.
https://doi.org/10.3233/jpd-202081
[5] Umemoto, G. and Furuya, H. (2020) Management of Dysphagia in Patients with Parkinson’s Disease and Related Disorders. Internal Medicine, 59, 7-14.
https://doi.org/10.2169/internalmedicine.2373-18
[6] Pflug, C., Bihler, M., Emich, K., Niessen, A., Nienstedt, J.C., Flügel, T., et al. (2017) Critical Dysphagia Is Common in Parkinson Disease and Occurs Even in Early Stages: A Prospective Cohort Study. Dysphagia, 33, 41-50.
https://doi.org/10.1007/s00455-017-9831-1
[7] Patel, B., Legacy, J., Hegland, K.W., Okun, M.S. and Herndon, N.E. (2020) A Comprehensive Review of the Diagnosis and Treatment of Parkinson’s Disease Dysphagia and Aspiration. Expert Review of Gastroenterology & Hepatology, 14, 411-424.
https://doi.org/10.1080/17474124.2020.1769475
[8] Fujioka, S., Fukae, J., Ogura, H., Mishima, T., Yanamoto, S., Higuchi, M., et al. (2016) Hospital-Based Study on Emergency Admission of Patients with Parkinson’s Disease. eNeurologicalSci, 4, 19-21.
https://doi.org/10.1016/j.ensci.2016.04.007
[9] Kwon, M. and Lee, J. (2019) Oro-Pharyngeal Dysphagia in Parkinson’s Disease and Related Movement Disorders. Journal of Movement Disorders, 12, 152-160.
https://doi.org/10.14802/jmd.19048
[10] Suntrup, S., Teismann, I., Bejer, J., Suttrup, I., Winkels, M., Mehler, D., et al. (2013) Evidence for Adaptive Cortical Changes in Swallowing in Parkinson’s Disease. Brain, 136, 726-738.
https://doi.org/10.1093/brain/awt004
[11] Suttrup, I. and Warnecke, T. (2015) Dysphagia in Parkinson’s Disease. Dysphagia, 31, 24-32.
https://doi.org/10.1007/s00455-015-9671-9
[12] Kargbo, R.B. (2023) Microbiome-Gut-Brain Axis Modulation: New Approaches in Treatment of Parkinson’s Disease and Amyotrophic Lateral Sclerosis. ACS Medicinal Chemistry Letters, 14, 886-888.
https://doi.org/10.1021/acsmedchemlett.3c00221
[13] Pan-Montojo, F. and Reichmann, H. (2014) Considerations on the Role of Environmental Toxins in Idiopathic Parkinson’s Disease Pathophysiology. Translational Neurodegeneration, 3, Article No. 10.
https://doi.org/10.1186/2047-9158-3-10
[14] Mu, L., Sobotka, S., Chen, J., Su, H., Sanders, I., Adler, C.H., et al. (2013) Alpha-Synuclein Pathology and Axonal Degeneration of the Peripheral Motor Nerves Innervating Pharyngeal Muscles in Parkinson Disease. Journal of Neuropathology & Experimental Neurology, 72, 119-129.
https://doi.org/10.1097/nen.0b013e3182801cde
[15] Mu, L., Sobotka, S., Chen, J., Su, H., Sanders, I., Nyirenda, T., et al. (2013) Parkinson Disease Affects Peripheral Sensory Nerves in the Pharynx. Journal of Neuropathology & Experimental Neurology, 72, 614-623.
https://doi.org/10.1097/nen.0b013e3182965886
[16] Mu, L., Sobotka, S., Chen, J., Su, H., Sanders, I., Adler, C.H., et al. (2012) Altered Pharyngeal Muscles in Parkinson Disease. Journal of Neuropathology & Experimental Neurology, 71, 520-530.
https://doi.org/10.1097/nen.0b013e318258381b
[17] Niimi, M., Hashimoto, G., Hara, T., Yamada, N., Abo, M., Fujigasaki, H., et al. (2017) Relationship between Frequency of Spontaneous Swallowing and Salivary Substance P Level in Patients with Acute Stroke. Dysphagia, 33, 414-418.
https://doi.org/10.1007/s00455-017-9867-2
[18] Schröder, J.B., Marian, T., Claus, I., Muhle, P., Pawlowski, M., Wiendl, H., et al. (2019) Substance P Saliva Reduction Predicts Pharyngeal Dysphagia in Parkinson’s Disease. Frontiers in Neurology, 10, Article 386.
https://doi.org/10.3389/fneur.2019.00386
[19] Muhle, P., Suntrup-Krueger, S., Bittner, S., Ruck, T., Claus, I., Marian, T., et al. (2017) Increase of Substance P Concentration in Saliva after Pharyngeal Electrical Stimulation in Severely Dysphagic Stroke Patients—An Indicator of Decannulation Success? Neurosignals, 25, 74-87.
https://doi.org/10.1159/000482002
[20] Simons, J.A., Fietzek, U.M., Waldmann, A., Warnecke, T., Schuster, T. and Ceballos-Baumann, A.O. (2014) Development and Validation of a New Screening Questionnaire for Dysphagia in Early Stages of Parkinson’s Disease. Parkinsonism & Related Disorders, 20, 992-998.
https://doi.org/10.1016/j.parkreldis.2014.06.008
[21] Manor, Y., Giladi, N., Cohen, A., Fliss, D.M. and Cohen, J.T. (2007) Validation of a Swallowing Disturbance Questionnaire for Detecting Dysphagia in Patients with Parkinson’s Disease. Movement Disorders, 22, 1917-1921.
https://doi.org/10.1002/mds.21625
[22] 胡美娇, 李芳琴, 陈悦霞, 等. 慕尼黑吞咽障碍测试-帕金森病问卷调查的汉化及信效度评价[J]. 现代实用医学, 2021, 33(11): 1450-1452.
[23] Branco, L.L., Trentin, S., Augustin Schwanke, C.H., Gomes, I. and Loureiro, F. (2019) The Swallowing Clinical Assessment Score in Parkinson’s Disease (SCAS-PD) Is a Valid and Low-Cost Tool for Evaluation of Dysphagia: A Gold-Standard Comparison Study. Journal of Aging Research, 2019, 1-7.
https://doi.org/10.1155/2019/7984635
[24] Bergamaschi, R., Crivelli, P., Rezzani, C., Patti, F., Solaro, C., Rossi, P., et al. (2008) The DYMUS Questionnaire for the Assessment of Dysphagia in Multiple Sclerosis. Journal of the Neurological Sciences, 269, 49-53.
https://doi.org/10.1016/j.jns.2007.12.021
[25] Dagna, C., Avenali, M., De Icco, R., Gandolfi, M., Solaro, C., Restivo, D., et al. (2021) From DYMUS to DYPARK: Validation of a Screening Questionnaire for Dysphagia in Parkinson’s Disease. Dysphagia, 37, 824-830.
https://doi.org/10.1007/s00455-021-10332-1
[26] Cosentino, G., Avenali, M., Schindler, A., Pizzorni, N., Montomoli, C., Abbruzzese, G., et al. (2021) A Multinational Consensus on Dysphagia in Parkinson’s Disease: Screening, Diagnosis and Prognostic Value. Journal of Neurology, 269, 1335-1352.
https://doi.org/10.1007/s00415-021-10739-8
[27] Bhanu, K. and Kanna, S. (2014) A Simple Bedside Test to Assess the Swallowing Dysfunction in Parkinson’s Disease. Annals of Indian Academy of Neurology, 17, 62-65.
https://doi.org/10.4103/0972-2327.128556
[28] Miyazaki, Y., Arakawa, M. and Kizu, J. (2002) Introduction of Simple Swallowing Ability Test for Prevention of Aspiration Pneumonia in the Elderly and Investigation of Factors of Swallowing Disorders. Yakugaku Zasshi, 122, 97-105.
https://doi.org/10.1248/yakushi.122.97
[29] Pflug, C., Niessen, A., Buhmann, C. and Bihler, M. (2019) Swallowing Speed Is No Adequate Predictor of Aspiration in Parkinson’s Disease. Neurogastroenterology & Motility, 31, e13713.
https://doi.org/10.1111/nmo.13713
[30] Fattori, B., Nacci, A., Farneti, D., Ceravolo, R., Santoro, A., Bastiani, L., et al. (2022) Dysphagia in Parkinson’s Disease: Pharyngeal Manometry and Fiberoptic Endoscopic Evaluation. Auris Nasus Larynx, 49, 986-994.
https://doi.org/10.1016/j.anl.2022.03.016
[31] Curtis, J.A., Borders, J.C., Perry, S.E., Dakin, A.E., Seikaly, Z.N. and Troche, M.S. (2021) Visual Analysis of Swallowing Efficiency and Safety (VASES): A Standardized Approach to Rating Pharyngeal Residue, Penetration, and Aspiration during Fees. Dysphagia, 37, 417-435.
https://doi.org/10.1007/s00455-021-10293-5
[32] Kuuskoski, J., Vanhatalo, J., Rekola, J., Aaltonen, L. and Järvenpää, P. (2023) The Water Swallow Test and Eat-10 as Screening Tools for Referral to Videofluoroscopy. The Laryngoscope, 134, 1349-1355.
https://doi.org/10.1002/lary.31038
[33] Giraldo-Cadavid, L.F., Leal-Leaño, L.R., Leon-Basantes, G.A., Bastidas, A.R., Garcia, R., Ovalle, S., et al. (2016) Accuracy of Endoscopic and Videofluoroscopic Evaluations of Swallowing for Oropharyngeal Dysphagia. The Laryngoscope, 127, 2002-2010.
https://doi.org/10.1002/lary.26419
[34] Taira, K., Fujiwara, K., Fukuhara, T., Koyama, S., Morisaki, T. and Takeuchi, H. (2021) Evaluation of the Pharynx and Upper Esophageal Sphincter Motility Using High-Resolution Pharyngeal Manometry for Parkinson’s Disease. Clinical Neurology and Neurosurgery, 201, Article 106447.
https://doi.org/10.1016/j.clineuro.2020.106447
[35] Diaz, K. and Stegemöller, E.E.L. (2022) Electromyographic Measures of Asymmetric Muscle Control of Swallowing in Parkinson’s Disease. PLOS ONE, 17, e0262424.
https://doi.org/10.1371/journal.pone.0262424
[36] Alfonsi, E., Todisco, M., Fresia, M., Tassorelli, C. and Cosentino, G. (2021) Electrokinesiographic Study of Oropharyngeal Swallowing in Neurogenic Dysphagia. Dysphagia, 38, 543-557.
https://doi.org/10.1007/s00455-021-10336-x
[37] Nagaya, Teruhiko Kachi, Takako Yama, M. (2000) Effect of Swallowing Training on Swallowing Disorders in Parkinson’s Disease. Scandinavian Journal of Rehabilitation Medicine, 32, 11-15.
https://doi.org/10.1080/003655000750045677
[38] Nienstedt, J.C., Bihler, M., Niessen, A., Plaetke, R., Pötter-Nerger, M., Gerloff, C., et al. (2018) Predictive Clinical Factors for Penetration and Aspiration in Parkinson’s Disease. Neurogastroenterology & Motility, 31, e13524.
https://doi.org/10.1111/nmo.13524
[39] Cilia, R., Cereda, E., Akpalu, A., Sarfo, F.S., Cham, M., Laryea, R., et al. (2020) Natural History of Motor Symptoms in Parkinson’s Disease and the Long-Duration Response to Levodopa. Brain, 143, 2490-2501.
https://doi.org/10.1093/brain/awaa181
[40] Gandhi, P. and Steele, C.M. (2022) Effectiveness of Interventions for Dysphagia in Parkinson Disease: A Systematic Review. American Journal of Speech-Language Pathology, 31, 463-485.
https://doi.org/10.1044/2021_ajslp-21-00145
[41] Hirano, M., Isono, C., Fukuda, K., Ueno, S., Nakamura, Y. and Kusunoki, S. (2019) Effects of the Rotigotine Transdermal Patch versus Oral Levodopa on Swallowing in Patients with Parkinson’s Disease. Journal of the Neurological Sciences, 404, 5-10.
https://doi.org/10.1016/j.jns.2019.07.003
[42] Hirano, M., Samukawa, M., Isono, C., Kusunoki, S. and Nagai, Y. (2024) The Effect of Rasagiline on Swallowing Function in Parkinson’s Disease. Heliyon, 10, e23407.
https://doi.org/10.1016/j.heliyon.2023.e23407
[43] Dai, Y., Cai, J., Wang, H., Zhang, Y., Niu, C. and Wang, Y. (2023) Effect of Respiratory Training on Swallowing Function in Swallowing Disorders: A Systematic Review and Meta-Analysis. European Archives of Oto-Rhino-Laryngology, 281, 1069-1081.
https://doi.org/10.1007/s00405-023-08280-7
[44] Manor, Y., Mootanah, R., Freud, D., Giladi, N. and Cohen, J.T. (2013) Video-Assisted Swallowing Therapy for Patients with Parkinson’s Disease. Parkinsonism & Related Disorders, 19, 207-211.
https://doi.org/10.1016/j.parkreldis.2012.10.004
[45] Xu, W., Wang, J., Li, X., Liang, J., Song, L., Wu, Y., et al. (2023) Neuronal and Synaptic Adaptations Underlying the Benefits of Deep Brain Stimulation for Parkinson’s Disease. Translational Neurodegeneration, 12, Article No. 55.
https://doi.org/10.1186/s40035-023-00390-w
[46] Ashkan, K., Rogers, P., Bergman, H. and Ughratdar, I. (2017) Insights into the Mechanisms of Deep Brain Stimulation. Nature Reviews Neurology, 13, 548-554.
https://doi.org/10.1038/nrneurol.2017.105
[47] Chang, M.C., Park, J., Lee, B.J. and Park, D. (2021) The Effect of Deep Brain Stimulation on Swallowing Function in Parkinson’s Disease: A Narrative Review. Dysphagia, 36, 786-799.
https://doi.org/10.1007/s00455-020-10214-y
[48] Xie, T., Vigil, J., MacCracken, E., Gasparaitis, A., Young, J., Kang, W., et al. (2015) Low-Frequency Stimulation of STN-DBS Reduces Aspiration and Freezing of Gait in Patients with PD. Neurology, 84, 415-420.
https://doi.org/10.1212/wnl.0000000000001184
[49] Khedr, E.M., Mohamed, K.O., Soliman, R.K., Hassan, A.M.M. and Rothwell, J.C. (2019) The Effect of High-Frequency Repetitive Transcranial Magnetic Stimulation on Advancing Parkinson’s Disease with Dysphagia: Double Blind Randomized Clinical Trial. Neurorehabilitation and Neural Repair, 33, 442-452.
https://doi.org/10.1177/1545968319847968
[50] Li, Y., Chen, K., Wang, J., Lu, H., Li, X., Yang, L., et al. (2022) Research Progress on Transcranial Magnetic Stimulation for Post-Stroke Dysphagia. Frontiers in Behavioral Neuroscience, 16, Article 995614.
https://doi.org/10.3389/fnbeh.2022.995614
[51] Gong, W., Huang, P., Wang, S., Sun, R., Zhu, Z., Li, X., et al. (2022) Increased Activation of the Caudate Nucleus and Parahippocampal Gyrus in Parkinson’s Disease Patients with Dysphagia after Repetitive Transcranial Magnetic Stimulation: A Case-Control Study. Neural Regeneration Research, 17, 1051-1058.
https://doi.org/10.4103/1673-5374.324863
[52] Gómez-García, N., Álvarez-Barrio, L., Leirós-Rodríguez, R., Soto-Rodríguez, A., Andrade-Gómez, E. and Hernández-Lucas, P. (2023) Transcranial Direct Current Stimulation for Post-Stroke Dysphagia: A Meta-Analysis. Journal of Neuro Engineering and Rehabilitation, 20, Article No. 165.
https://doi.org/10.1186/s12984-023-01290-w
[53] Dashtelei, A.A., Nitsche, M.A., Salehinejad, M.A., et al. (2024) Adjunctive Transcranial Direct Current Stimulation to Improve Swallowing Functions in Parkinson’s Disease. Experimental and Clinical Sciences Journal, 23, 95-107.

Baidu
map