耐碳青霉烯肺炎克雷伯菌临床特征与危险因素
Clinical Features and Risk Factors of Carbapenem-Resistant Klebsiella pneumoniae
DOI: 10.12677/bp.2025.151002, PDF, HTML, XML,   
作者: 靳洋洋, 吴晓晗, 唐吉元昊, 黄 颖*:安徽医科大学第一附属医院检验科,安徽 合肥;孔雪莲:安徽省立医院,中国科学技术大学附属第一医院内科,安徽 合肥
关键词: 耐碳青霉烯肺炎克雷伯菌临床特征危险因素Carbapenem-Resistant Klebsiella pneumoniae Clinical Features Risk Factors
摘要: 目的:通过分析住院患者耐碳青霉烯肺炎克雷伯菌(Carbapenem-resistant Klebsiella p neumoniae, CRKP)的临床特征与危险因素,旨在为CRKP的诊断和治疗给予理论支撑。方法:采用回顾性研究方法选取安徽医科大学第一附属医院2023年6月至2024年7月住院患者分离出的肺炎克雷伯菌( Klebsiella pneumonia e, KP)。按菌株对碳青霉烯类药物的敏感性划分成两个组别:碳青霉烯敏感肺炎克雷伯菌(Carbapenem-susceptible Klebsiella p neumoniae, CSKP)组(n = 106)与CRKP组(n = 74)。收集所有研究对象的临床数据,并采用单因素分析和多因素logistic回归分析来分析住院患者发生CRKP的危险因素,明确各因素之间的关联以及对感染风险的影响程度,为后续的预防和控制感染提供科学依据。结果:180例KP患者中检出CRKP 74例,其中男性43例,女性31例。CRKP菌株主要来自重症医学科,其次为感染科和康复科,标本主要来源于痰液、血液和尿液。单因素分析显示,住院天数 ≥ 10天、肺部疾病、泌尿道感染、入住ICU史、入住ICU ≥ 5天、抗生素使用 > 14天、联用抗生素、呼吸机、尿道插管、中心静脉置管、气管镜检、胃管置入均与CRKP感染有关(p < 0.05)。多因素分析结果显示,泌尿道感染、抗生素使用 > 14天、中心静脉置管为CPKP感染的独立危险因素。结论:泌尿道感染、抗生素使用 > 14天、中心静脉置管是导致CRKP菌株感染形成的独立危险因素,在临床防治CRKP感染中应加以重视。
Abstract: Objective: To analyze the clinical characteristics and risk factors of Carbapenem-resistant Klebsiella p neumoniae (CRKP) in hospitalized patients, aiming to give theoretical support for the diagnosis and treatment of CRKP. Methods: Klebsiella pneumoniae (KP) isolated from patients hospitalized in the First Affiliated Hospital of Anhui Medical University from June 2023 to July 2024 were selected using a retrospective study. The strains were divided into two groups according to their susceptibility to carbapenems: the carbapenem-susceptible Klebsiella pneumoniae (CSKP) group (n = 106) versus the CRKP group (n = 74). Clinical data of all study subjects were collected. Univariate analysis and logistic regression analysis were used to analyze the risk factors for the occurrence of CRKP in hospitalized patients, to clarify the association between the characteristics and the degree of influence on the risk of infection, and to provide a scientific basis for the subsequent prevention and control of infection. Results: CRKP was detected in 74 of 180 KP patients, including 43 males and 31 females. CRKP strains were mainly from the Department of Intensive Care Medicine, followed by the Department of Infectious Diseases and the Department of Rehabilitation, and specimens were mainly from sputum, blood, and urine. Univariate analysis showed that hospitalization days ≥ 10 days, pulmonary disease, urinary tract infection, history of ICU stay, ICU stay ≥ 5 days, antibiotic use > 14 days, combined antibiotics, ventilator, urethral intubation, central venous catheterization, tracheoscopy, and gastric tube placement were all associated with CRKP infections (p < 0.05). The results of multifactorial analysis showed that urinary tract infection, antibiotic use for more than 14 days, and central venous catheterization were independent risk factors for CPKP infection. Conclusion: Urinary tract infection, antibiotic use for more than 14 days, and central venous catheterization are independent risk factors leading to the formation of CRKP strain infections, which should be emphasized in the clinical prevention and treatment of CRKP infections.
文章引用:靳洋洋, 孔雪莲, 吴晓晗, 唐吉元昊, 黄颖. 耐碳青霉烯肺炎克雷伯菌临床特征与危险因素[J]. 生物过程, 2025, 15(1): 6-13. https://doi.org/10.12677/bp.2025.151002

1. 引言

肺炎克雷伯菌(Klebsiella pneumoniae, KP)隶属于肠杆菌科克雷伯菌属,为能引发肺炎、泌尿道感染、败血症与脑膜炎等多部位感染的病原菌。该菌在自然环境广泛存在,是院内感染的主要致病菌之一。耐碳青霉烯肺炎克雷伯菌(Carbapenem-resistant Klebsiella pneumoniae, CRKP),即对亚胺培南、厄他培南、美罗培南或多利培南这类碳青霉烯类抗生素产生耐药性,具体为亚胺培南、美罗培南、多利培南最低抑菌浓度(Minimum inhibitory concentration, MIC) ≥ 4 mg/L或厄他培南MIC ≥ 2 mg/L,抑或被证实产碳青霉烯酶的KP [1]

近年来,碳青霉烯类抗生素的滥用与侵袭性操作的频繁进行,致使CRKP在全球呈流行态势。CRKP菌株的多重耐药特征及在重症与免疫低下患者中引发的高病死率,使临床治疗面临严峻挑战[2]。因此,本研究聚焦于临床分离的CRKP菌株感染特性与相关危险因素展开深入剖析,为临床防控CRKP感染提供理论依据。

2. 材料与方法

2.1. 菌株来源

采集2023年6月至2024年7月安徽医科大学第一附属医院住院患者痰液、血液、尿液、分泌物等标本中的KP,剔除源自同一患者、相同样本来源或同一病原体的重复菌株。本研究已获本院伦理委员会批准(批准编号:PJ2024-12-51)。

2.2. 方法

2.2.1. 鉴定菌株

菌株按临床检验操作规程进行分离和培养,全部细菌均使用基质辅助激光解吸/电离飞行时间质谱法进行鉴定。

2.2.2. 药敏试验

MIC值运用VITEK2 Compact全自动细菌分析仪测定,并以K-B纸片法辅助,其结果依据美国临床实验室标准协会药敏试验结果予以阐释[3]。药物敏感试验的质控菌株采用大肠埃希菌ATCC 25922。

2.2.3. 菌株分组

按菌株对碳青霉烯类药物的敏感性划分成两个组别:碳青霉烯敏感肺炎克雷伯菌(Carbapenem-susceptible Klebsiella pneumoniae, CSKP)组(n = 106)与CRKP组(n = 74)。

2.3. 统计学方法

利用SPSS 27.0统计学软件对数据进行分析。

3. 结果

3.1. 临床基本特征

本研究筛选出180株KP,其中CRKP 74株,CSKP 106株。CRKP组男性43例、女性31例,年龄范围为15天至90岁,平均年龄(61.03 ± 20.26)岁;CSKP组男性71例、女性35例,年龄范围是5天至93岁,平均年龄(62.26 ± 17.80)岁。就科室分布而言,CRKP菌株多源于重症医学科,占比达62.2% (46/74),感染科、康复科等科室占比依次为8.1% (6/74)、5.4% (4/74)。在标本类型方面,CRKP菌株主要从痰液标本中分离得到,占50% (37/74),血液标本、尿液标本占比分别为2.7% (22/74)、12.2% (9/74)。两组患者在住院天数 ≥ 10天方面呈现出显著的统计学差异(见表1)。

3.2. 基础疾病

本研究中,糖尿病占27.8% (50/180),肺部疾病占50.6% (91/180),脓毒血症占9.4% (17/180),泌尿道感染占12.8% (23/180),高血压占37.8% (68/180)。在所研究的KP患者群体里,合并一种或多种基础病症较为普遍。CRKP组与CSKP组之中,肺部疾病均为首要合并基础疾病,在两组中分别占62.2% (46/76)与42.5% (45/106),高血压次之,分别占41.9% (31/76)和34.9% (37/106)。单因素回归分析(见表1)显示,肺部疾病及泌尿道感染在组间差异具备统计学意义,提示肺部疾病与泌尿道感染是CRKP感染的危险因素。

3.3. 入住ICU情况

两组患者在ICU入住史及入住时长 ≥ 5天方面呈现出显著的统计学差异(见表1)。此结果显示,ICU入住史以及入住时长均与CRKP感染紧密相关,二者皆可认定为CRKP感染的重要危险因素。

3.4. 抗生素使用情况

结果表明,两组在抗生素使用时长超14天、多种抗生素联合使用这两方面有显著统计学差异,而手术后抗生素使用未达统计学显著水平(见表1)。由此可知,抗生素使用时长超14天与多种抗生素联合使用,皆为致使CRKP感染风险增加的易感因素。

3.5. 侵入性操作

临床实践中,侵入性操作在CRKP与CSKP患者群体中较为常见,于老年及危重患者群体中出现频率更高。由表1可知,尿道插管是两组患者最常见的侵入性操作,在CRKP组占比74.3% (55/74),CSKP组占比41.5% (44/106)。进一步研究发现,在呼吸机使用、尿道插管、中心静脉导管置入、气管镜检查以及胃管插入等方面,两组患者存在显著的统计学差异。据此表明,上述这些侵入性操作皆是CRKP感染的重要危险因素。

3.6. 住院结局

CRKP与CSKP患者住院结局分布情况详见图1。两组患者住院结局多以病情好转为主,大部分KP患者经有效住院治疗后可获积极结局,乃至达到治愈。对比分析CRKP与CSKP两组患者住院结局(见表1),结果显示差异具有统计学意义,表明这两类患者的住院结局存在显著不同。

Table 1. Univariate regression analysis of CRKP infection

1. CRKP感染的单因素回归分析

危险因素

CRKP组

(n = 74)

CSKP组

(n = 106)

OR (95% CI)

p值

临床基本特征

性别(男)

43 (58.1%)

71 (67.0%)

0.684 (0.370, 1.264)

0.225

年龄(岁)

61.0 ± 20.26

62.26 ± 17.80

0.997 (0.980, 1.015)

0.764

高龄(>65岁)

38 (51.4%)

52 (49.1%)

1.096 (0.605, 1.985)

0.762

住院天数 ≥ 10天

67 (90.5%)

79 (74.5%)

3.271 (1.340, 7.988)

0.009*

基础疾病

糖尿病

15 (20.3%)

35 (33.0%)

0.516 (0.257, 1.035)

0.062

肺部疾病

46 (62.2%)

45 (42.5%)

2.227 (1.213, 4.088)

0.010*

脓毒血症

10 (13.5%)

7 (6.6%)

2.210 (0.800, 6.102)

0.126

泌尿道感染

14 (18.9%)

9 (8.5%)

2.515 (1.025, 6.168)

0.044*

高血压

31 (41.9%)

37 (34.9%)

1.344 (0.730, 2.476)

0.342

入住ICU情况

入住ICU史

46 (62.2%)

26 (24.5%)

5.055 (2.651, 9.638)

0.000*

入住天数 ≥ 5天

37 (50.0%)

23 (21.7%)

3.609 (1.886, 6.904)

0.000*

抗生素使用情况

使用 > 14天

59 (79.7%)

46 (43.4%)

5.130 (2.587, 10.174)

0.000*

术后使用

34 (45.9%)

40 (37.7%)

1.402 (0.768, 2.562)

0.271

联用抗生素

63 (85.1%)

54 (50.9%)

5.515 (2.618, 11.619)

0.000*

续表

侵入性操作

呼吸机使用

44 (59.5%)

22 (20.8%)

5.600 (2.894, 10.836)

0.000*

尿道插管

55 (74.3%)

44 (41.5%)

4.079 (2.131, 7.806)

0.000*

中心静脉置管

35 (47.3%)

6 (5.7%)

14.957 (5.832, 38.358)

0.000*

气管镜检

11 (14.9%)

6 (5.7%)

2.910 (1.025, 8.262)

0.045*

有创手术

35 (47.3%)

40 (37.7%)

1.481 (0.811, 2.704)

0.201

胃管置入

49 (66.2%)

25 (23.6%)

6.350 (3.288, 12.264)

0.000*

(注:*表示p < 0.05,差异有统计学意义)。

Figure 1. Distribution of hospitalization outcomes for CRKP versus CSKP

1. CRKP与CSKP住院结局分布

3.7. 多因素回归分析

将上述单因素分析中p < 0.05的易感因素,构建多因素Logistic回归模型进行分析(见表2)。结果表明,泌尿道感染、抗生素使用超14天以及中心静脉置管,均为患者发生CRKP感染的独立危险因素。

Table 2. Multifactorial Logistic regression analysis of CRKP infection

2. CRKP感染的多因素Logistic回归分析

危险因素

OR

95% CI

p值

住院天数 ≥ 10天

0.953

0.247~3.684

0.945

肺部疾病

1.298

0.544~3.096

0.556

泌尿道感染

7.319

2.195~24.407

0.001*

入住ICU史

1.890

0.354~10.104

0.457

ICU入住天数 ≥ 5天

0.461

0.098~2.163

0.326

抗生素使用 > 14天

3.642

1.152~11.517

0.028*

联用抗生素

1.542

0.518~4.594

0.436

续表

呼吸机使用

1.934

0.517~7.239

0.327

尿道插管

1.038

0.393~2.739

0.941

中心静脉置管

10.150

3.533~29.159

0.000*

气管镜检

0.989

0.226~4.329

0.988

胃管置入

1.738

0.609~4.960

0.302

(注:*表示p < 0.05,差异有统计学意义)。

4. 讨论

KP属肠杆菌科克雷伯菌属[4],可引起肺炎、泌尿道、血液、脑等多部位的感染[5]。KP在社区广泛分布,也是院内感染的主要病原体[6]。因碳青霉烯类抗菌药近年来在临床上大量使用,病原菌对该类抗生素耐药性持续攀升[7]。自1997年国际上首次报告CRKP病例起[8],全球此类感染病例陆续出现。2017年世界卫生组织将其列为急需研发新抗菌药的耐药菌[9]。据2024年我国全年细菌耐药监测数据,KP在主要菌种中位居第二,仅次于大肠埃希菌,彰显CRKP感染已成全球公共卫生领域重大挑战[10] [11]

本研究纳入180名KP感染患者,CRKP组74例,CSKP组106例,CRKP检出率41.1%。两组男性患者数量均多于女性,平均年龄分别为(61.03 ± 20.26)岁、(62.26 ± 17.80)岁,这与彭雪儿等[12]研究发现的CRKP医院感染高风险人群为男性、老年患者相一致。74例CRKP患者中有38例(51.4%)超过65岁,CSKP患者中有52例(49.1%)患者超过65岁,虽无统计学显著差异,仍表明KP感染于高龄人群易发,源于高龄者基础疾病多、免疫力低,临床应予以更多关注[13]。国外学者Amit等[14]的研究也指出CRKP感染在高龄(>65岁)人群更常见,与本研究结论相符。

临床分布科室方面,CRKP菌株多源于重症医学科,感染科与康复科次之。重症医学科患者病情重、住院时间长,需长期卧床,易致血液循环不畅,进而增加CRKP感染风险[15]。同时,该科室患者接受医源性侵袭性操作频繁,且大量使用抗生素,均与CRKP形成密切相关[16]。感染科和康复科患者病情重、年龄偏大,机体免疫力低,又合并多种基础疾病,常需进行侵入性操作,故发生CRKP感染的风险较大[12]。就标本来源而言,CRKP菌株主要来源于痰液、血液和尿液,这或许是因为呼吸道为CRKP的主要定植部位,病情较重患者行侵入性操作时,易将定植于呼吸道的病原菌带入机体,致使患者感染[17]

KP感染患者常合并一种或多种基础疾病。本研究的180例KP感染患者里,CRKP组与CSKP组患者合并的主要基础疾病是肺部疾病,高血压次之。其中,肺部疾病、泌尿道感染的差异具统计学意义,且泌尿道感染经多因素Logistic回归分析,OR > 1,p < 0.05,表明泌尿道感染是致使CRKP菌株产生的独立危险因素。此外,泌尿道感染患者往往同时面临抗生素使用、尿道插管等危险因素暴露,显著提升了该人群CRKP感染的风险[18]

CRKP组中62.2%的患者有ICU入住史,且半数患者ICU入住天数超5天。统计分析表明,ICU入住史及入住天数 ≥ 5天均为CRKP感染的危险因素,此结论与薛阿琳[18]等人的研究相符。ICU患者多病情危重,且呼吸机、尿道插管、中心静脉置管等侵入性操作,增加了CRKP感染的风险[19]

在本研究中,抗生素使用 > 14天、联用抗生素差异有统计学意义,且前者为CRKP发生的独立危险因素,与国外学者[20]研究相符。可能原因是长期使用抗生素导致机体菌群失调[21] [22],致使呼吸道黏膜屏障受损,催生CRKP菌株,使其感染风险攀升。

本研究显示,尿道插管是CRKP组与CSKP组患者最常见的侵入性操作。单因素分析表明,呼吸机使用、尿道插管、中心静脉置管、气管镜检查及胃管置入均存在统计学差异,且中心静脉置管为导致CRKP菌株形成的独立危险因素。由于人体表皮是身体与外界环境的关键屏障[23],侵入性操作会破坏这一自然屏障,使人体内部直接暴露于外界环境,致使部分致病菌得以直接侵入人体深层组织,进而增加CRKP感染几率。

就住院结局而言,两组患者经住院治疗后多以好转为主,值得注意的是,CRKP感染患者死亡率偏高,预后状况通常较差。鉴于此,为有力遏制CRKP菌株的产生与传播,应加强菌株监测工作,必要时对感染患者实施隔离举措,以此降低交叉感染风险[24]

5. 结论

CRKP患者病情往往较重,以老年男性居多,住院时长较久,多源于重症医学科,常伴有肺部疾病、高血压、糖尿病、泌尿道感染等基础疾病。泌尿道感染、长期使用抗生素以及侵入性操作是导致CRKP菌株形成的高危因素,通过有效干预以控制或减少这些因素,能大幅降低住院患者CRKP感染风险。不仅临床需强化对这类病人CRKP感染风险的认知,医疗机构与医务人员亦应采取积极且有效的举措防控此类感染。例如,强化对高龄患者的护理,限制家属探视病房的频率与时长,积极规范治疗基础疾病,依规使用抗生素,提高医务工作者侵入性操作的规范性。

致 谢

感谢匿名审稿人的建设性意见,感谢安徽医科大学第一附属医院的合作。

NOTES

*通讯作者。

参考文献

[1] 中国碳青霉烯耐药肠杆菌科细菌感染诊治与防控专家共识编写组, 中国医药教育协会感染疾病专业委员会, 中华医学会细菌感染与耐药防控专业委员会. 中国碳青霉烯耐药肠杆菌科细菌感染诊治与防控专家共识[J]. 中华医学杂志, 2021, 101(36): 2850-2860.
[2] Luthfiyah, S., Idayanti, T. and Ismath, M. (2025) Commentary on ‘Incidence, Antimicrobial Resistance, and Mortality of Klebsiella pneumoniae Bacteraemia in Shanghai, China, 2018-2022’. Infectious Diseases.
https://doi.org/10.1080/23744235.2025.2460505
[3] Humphries, R., Bobenchik, A.M., Hindler, J.A. and Schuetz, A.N. (2021) Overview of Changes to the Clinical and Laboratory Standards Institute performance Standards for Antimicrobial Susceptibility Testing, M100, 31st Edition. Journal of Clinical Microbiology, 59, e0021321.
https://doi.org/10.1128/jcm.00213-21
[4] Kamaladevi, A. and Balamurugan, K. (2017) Global Proteomics Revealed Klebsiella pneumoniae Induced Autophagy and Oxidative Stress in Caenorhabditis elegans by Inhibiting PI3K/AKT/mTOR Pathway during Infection. Frontiers in Cellular and Infection Microbiology, 7, Article 393.
https://doi.org/10.3389/fcimb.2017.00393
[5] Xu, J., Zhu, Z., Chen, Y., Wang, W. and He, F. (2021) The Plasmid-Borne Tet(A) Gene Is an Important Factor Causing Tigecycline Resistance in ST11 Carbapenem-Resistant Klebsiella pneumoniae under Selective Pressure. Frontiers in Microbiology, 12, Article 644949.
https://doi.org/10.3389/fmicb.2021.644949
[6] Zhang, F., Yan, X., Bai, J., Xiang, L., Ding, M., Li, Q., et al. (2022) Identification of the Bola Protein Reveals a Novel Virulence Factor in K. pneumoniae That Contributes to Survival in Host. Microbiology Spectrum, 10, e0037822.
https://doi.org/10.1128/spectrum.00378-22
[7] Alves, J., Dias, L., Mateus, J., Marques, J., Graças, D., Ramos, R., et al. (2020) Resistome in Lake Bolonha, Brazilian Amazon: Identification of Genes Related to Resistance to Broad-Spectrum Antibiotics. Frontiers in Microbiology, 11, Article 67.
https://doi.org/10.3389/fmicb.2020.00067
[8] Adler, A. and Carmeli, Y. (2011) Dissemination of the Klebsiella pneumoniae Carbapenemase in the Health Care Settings: Tracking the Trails of an Elusive Offender. mBio, 2, e00280-11.
https://doi.org/10.1128/mbio.00280-11
[9] Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D.L., et al. (2018) Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. The Lancet Infectious Diseases, 18, 318-327.
https://doi.org/10.1016/s1473-3099(17)30753-3
[10] Qin, J., Zhu, Y., Zhu, Y., Gao, Q., Zhang, H., Li, M., et al. (2024) Emergence of Silent NDM-1 Carbapenemase Gene in Carbapenem-Susceptible Klebsiella pneumoniae: Clinical Implications and Epidemiological Insights. Drug Resistance Updates, 76, Article ID: 101123.
https://doi.org/10.1016/j.drup.2024.101123
[11] Wang, X., Xu, X., Zhang, S., Chen, N., Sun, Y., Ma, K., et al. (2022) TPGS-Based and S-Thanatin Functionalized Nanorods for Overcoming Drug Resistance in Klebsiella pneumonia. Nature Communications, 13, Article No. 3731.
https://doi.org/10.1038/s41467-022-31500-3
[12] 彭雪儿, 李六亿, 孙立颖. 2011-2017年北京某三级综合医院耐碳青霉烯类肺炎克雷伯菌医院感染流行病学特征[J]. 中华医院感染学杂志, 2020, 30(22): 3366-3371.
[13] Zhou, C., Sun, L., Li, H., Huang, L. and Liu, X. (2023) Risk Factors and Mortality of Elderly Patients with Hospital-Acquired Pneumonia of Carbapenem-Resistant Klebsiella pneumoniae Infection. Infection and Drug Resistance, 16, 6767-6779.
https://doi.org/10.2147/idr.s431085
[14] Amit, S., Mishali, H., Kotlovsky, T., Schwaber, M.J. and Carmeli, Y. (2015) Bloodstream Infections among Carriers of Carbapenem-Resistant Klebsiella pneumoniae: Etiology, Incidence and Predictors. Clinical Microbiology and Infection, 21, 30-34.
https://doi.org/10.1016/j.cmi.2014.08.001
[15] Li, Y., Li, J., Hu, T., Hu, J., Song, N., Zhang, Y., et al. (2020) Five-Year Change of Prevalence and Risk Factors for Infection and Mortality of Carbapenem-Resistant Klebsiella pneumoniae Bloodstream Infection in a Tertiary Hospital in North China. Antimicrobial Resistance & Infection Control, 9, Article No. 79.
https://doi.org/10.1186/s13756-020-00728-3
[16] Temkin, E., Adler, A., Lerner, A. and Carmeli, Y. (2014) Carbapenem‐Resistant Enterobacteriaceae: Biology, Epidemiology, and Management. Annals of the New York Academy of Sciences, 1323, 22-42.
https://doi.org/10.1111/nyas.12537
[17] Richelsen, R., Smit, J., Schønheyder, H.C., Laxsen Anru, P., Gutiérrez-Gutiérrez, B., Rodríguez-Bãno, J., et al. (2020) Outcome of Community-Onset Esbl-Producing Escherichia coli and Klebsiella pneumoniae Bacteraemia and Urinary Tract Infection: A Population-Based Cohort Study in Denmark. Journal of Antimicrobial Chemotherapy, 75, 3656-3664.
https://doi.org/10.1093/jac/dkaa361
[18] 薛阿琳, 王美霞, 庄贵华. 耐碳青霉烯类肺炎克雷伯菌的感染特征和危险因素[J]. 中国卫生标准管理, 2023, 14(5): 169-173.
[19] Chang, D., Sharma, L., Dela Cruz, C.S. and Zhang, D. (2021) Clinical Epidemiology, Risk Factors, and Control Strategies of Klebsiella pneumoniae Infection. Frontiers in Microbiology, 12, Article 750662.
https://doi.org/10.3389/fmicb.2021.750662
[20] Poirel, L., Yilmaz, M., Istanbullu, A., Arslan, F., Mert, A., Bernabeu, S., et al. (2014) Spread of NDM-1-Producing Enterobacteriaceae in a Neonatal Intensive Care Unit in Istanbul, Turkey. Antimicrobial Agents and Chemotherapy, 58, 2929-2933.
https://doi.org/10.1128/aac.02047-13
[21] Rasooly, R., Howard, A.C., Balaban, N., Hernlem, B. and Apostolidis, E. (2022) The Effect of Tannin-Rich Witch Hazel on Growth of Probiotic Lactobacillus plantarum. Antibiotics, 11, Article 395.
https://doi.org/10.3390/antibiotics11030395
[22] Han, L., Yuan, Y., Chen, X., Huang, J., Wang, G., Zhou, C., et al. (2022) A Candidate Drug Screen Strategy: The Discovery of Oroxylin a in Scutellariae Radix against Sepsis via the Correlation Analysis between Plant Metabolomics and Pharmacodynamics. Frontiers in Pharmacology, 13, Article 861105.
https://doi.org/10.3389/fphar.2022.861105
[23] Li, J., Chen, Y., Tiwari, M., Bansal, V. and Sen, G.L. (2021) Regulation of Integrin and Extracellular Matrix Genes by HNRNPL Is Necessary for Epidermal Renewal. PLOS Biology, 19, e3001378.
https://doi.org/10.1371/journal.pbio.3001378
[24] Jomehzadeh, N., Rahimzadeh, M. and Ahmadi, B. (2024) Molecular Detection of Extended‐Spectrum β‐Lactamase‐ and Carbapenemase‐Producing Klebsiella pneumoniae Isolates in Southwest Iran. Tropical Medicine & International Health, 29, 875-881.
https://doi.org/10.1111/tmi.14043

Baidu
map