[1] |
秦积舜, 李永亮, 吴德彬, 等. CCUS全球进展与中国对策建议[J]. 油气地质与采收率, 2020, 27(1): 20-28. |
[2] |
高志豪, 夏菖佑, 廖松林, 等. 玄武岩CO2矿化封存潜力评估方法研究现状及展望[J]. 高校地质学报, 2023, 29(1): 66-75. |
[3] |
Assima, G.P., Larachi, F., Molson, J. and Beaudoin, G. (2014) Impact of Temperature and Oxygen Availability on the Dynamics of Ambient CO2 Mineral Sequestration by Nickel Mining Residues. Chemical Engineering Journal, 240, 394-403. https://doi.org/10.1016/j.cej.2013.12.010 |
[4] |
Sanna, A., Uibu, M., Caramanna, G., Kuusik, R. and Maroto-Valer, M.M. (2014) A Review of Mineral Carbonation Technologies to Sequester CO2. Chemical Society Reviews, 43, 8049-8080. https://doi.org/10.1039/c4cs00035h |
[5] |
Kelemen, P., Benson, S.M., Pilorgé, H., Psarras, P. and Wilcox, J. (2019) An Overview of the Status and Challenges of CO2 Storage in Minerals and Geological Formations. Frontiers in Climate, 1, Article 9. https://doi.org/10.3389/fclim.2019.00009 |
[6] |
Matter, J.M., Broecker, W.S., Stute, M., Gislason, S.R., Oelkers, E.H., Stefánsson, A., et al. (2009) Permanent Carbon Dioxide Storage into Basalt: The CarbFix Pilot Project, Iceland. Energy Procedia, 1, 3641-3646. https://doi.org/10.1016/j.egypro.2009.02.160 |
[7] |
Gislason, S.R. and Oelkers, E.H. (2003) Mechanism, Rates, and Consequences of Basaltic Glass Dissolution: II. An Experimental Study of the Dissolution Rates of Basaltic Glass as a Function of Ph and Temperature. Geochimica et Cosmochimica Acta, 67, 3817-3832. https://doi.org/10.1016/s0016-7037(03)00176-5 |
[8] |
Power, I.M., Wilson, S. and Dipple, G.M. (2013) Serpentinite Carbonation for CO2 Sequestration. Elements, 9, 115-121. https://doi.org/10.2113/gselements.9.2.115 |
[9] |
Liu, M., Asgar, H., Seifert, S. and Gadikota, G. (2020) Novel Aqueous Amine Looping Approach for the Direct Capture, Conversion and Storage of CO2 to Produce Magnesium Carbonate. Sustainable Energy & Fuels, 4, 1265-1275. https://doi.org/10.1039/c9se00316a |
[10] |
Santos, R.M., Knops, P.C.M., Rijnsburger, K.L. and Chiang, Y.W. (2016) CO2 Energy Reactor—Integrated Mineral Carbonation: Perspectives on Lab-Scale Investigation and Products Valorization. Frontiers in Energy Research, 4, Article 5. https://doi.org/10.3389/fenrg.2016.00005 |
[11] |
Goldberg, D.S., Takahashi, T. and Slagle, A.L. (2008) Carbon Dioxide Sequestration in Deep-Sea Basalt. Proceedings of the National Academy of Sciences, 105, 9920-9925. https://doi.org/10.1073/pnas.0804397105 |
[12] |
张舟, 张宏福. 基性、超基性岩: 二氧化碳地质封存的新途径[J]. 地球科学(中国地质大学学报), 2012, 37(1): 156-162. |
[13] |
Snæbjörnsdóttir, S.Ó., Sigfússon, B., Marieni, C., Goldberg, D., Gislason, S.R. and Oelkers, E.H. (2020) Carbon Dioxide Storage through Mineral Carbonation. Nature Reviews Earth & Environment, 1, 90-102. https://doi.org/10.1038/s43017-019-0011-8 |
[14] |
Gislason, S.R., Wolff-Boenisch, D., Stefansson, A., Oelkers, E.H., Gunnlaugsson, E., Sigurdardottir, H., et al. (2010) Mineral Sequestration of Carbon Dioxide in Basalt: A Pre-Injection Overview of the CarbFix Project. International Journal of Greenhouse Gas Control, 4, 537-545. https://doi.org/10.1016/j.ijggc.2009.11.013 |
[15] |
McGrail, B.P., Schaef, H.T., Ho, A.M., Chien, Y., Dooley, J.J. and Davidson, C.L. (2006) Potential for Carbon Dioxide Sequestration in Flood Basalts. Journal of Geophysical Research: Solid Earth, 111, B12201. https://doi.org/10.1029/2005jb004169 |
[16] |
Kelemen, P.B. and Matter, J. (2008) In situ Carbonation of Peridotite for CO2 Storage. Proceedings of the National Academy of Sciences, 105, 17295-17300. https://doi.org/10.1073/pnas.0805794105 |
[17] |
Matter, J.M. and Kelemen, P.B. (2009) Permanent Storage of Carbon Dioxide in Geological Reservoirs by Mineral Carbonation. Nature Geoscience, 2, 837-841. https://doi.org/10.1038/ngeo683 |
[18] |
Matter, J.M., Broecker, W.S., Stute, M., Gislason, S.R., Oelkers, E.H., Stefánsson, A., et al. (2009) Permanent Carbon Dioxide Storage into Basalt: The CarbFix Pilot Project, Iceland. Energy Procedia, 1, 3641-3646. https://doi.org/10.1016/j.egypro.2009.02.160 |
[19] |
Takaya, Y., Nakamura, K. and Kato, Y. (2013) Geological, Geochemical and Social-Scientific Assessment of Basaltic Aquifers as Potential Storage Sites for CO2. Geochemical Journal, 47, 385-396. https://doi.org/10.2343/geochemj.2.0255 |
[20] |
Snæbjörnsdóttir, S.Ó., Oelkers, E.H., Mesfin, K., Aradóttir, E.S., Dideriksen, K., Gunnarsson, I., et al. (2017) The Chemistry and Saturation States of Subsurface Fluids during the in Situ Mineralisation of CO2 and H2S at the CarbFix Site in SW-Iceland. International Journal of Greenhouse Gas Control, 58, 87-102. https://doi.org/10.1016/j.ijggc.2017.01.007 |
[21] |
Xiong, W., Wells, R.K., Menefee, A.H., Skemer, P., Ellis, B.R. and Giammar, D.E. (2017) CO2 Mineral Trapping in Fractured Basalt. International Journal of Greenhouse Gas Control, 66, 204-217. https://doi.org/10.1016/j.ijggc.2017.10.003 |
[22] |
Dessert, C., Dupré, B., Gaillardet, J., François, L.M. and Allègre, C.J. (2003) Basalt Weathering Laws and the Impact of Basalt Weathering on the Global Carbon Cycle. Chemical Geology, 202, 257-273. https://doi.org/10.1016/j.chemgeo.2002.10.001 |
[23] |
Oelkers, E.H., Gislason, S.R. and Matter, J. (2008) Mineral Carbonation of CO2. Elements, 4, 333-337. https://doi.org/10.2113/gselements.4.5.333 |
[24] |
Mcgrail, B., Ho, A., Reidel, S. and Schaef, H. (2003) Use and Features of Basalt Formations for Geologic Sequestration. In: Gale, J. and Kaya, Y., Eds., Greenhouse Gas Control Technologies—6th International Conference, Elsevier, 1637-1640. https://doi.org/10.1016/b978-008044276-1/50264-6 |
[25] |
Lackner, K.S., Wendt, C.H., Butt, D.P., Joyce, E.L. and Sharp, D.H. (1995) Carbon Dioxide Disposal in Carbonate Minerals. Energy, 20, 1153-1170. https://doi.org/10.1016/0360-5442(95)00071-n |
[26] |
Gunter, W.D., Perkins, E.H. and McCann, T.J. (1993) Aquifer Disposal of CO2-Rich Gases: Reaction Design for Added Capacity. Energy Conversion and Management, 34, 941-948. https://doi.org/10.1016/0196-8904(93)90040-h |
[27] |
Kheshgi, H., de Coninck, H. and Kessels, J. (2012) Carbon Dioxide Capture and Storage: Seven Years after the IPCC Special Report. Mitigation and Adaptation Strategies for Global Change, 17, 563-567. https://doi.org/10.1007/s11027-012-9391-5 |
[28] |
Clark, D.E., Gunnarsson, I., Aradóttir, E.S., Þ. Arnarson, M., Þorgeirsson, Þ.A., Sigurðardóttir, S.S., et al. (2018) The Chemistry and Potential Reactivity of the CO2-H2S Charged Injected Waters at the Basaltic CarbFix2 Site, Iceland. Energy Procedia, 146, 121-128. https://doi.org/10.1016/j.egypro.2018.07.016 |
[29] |
Gislason, S.R. and Oelkers, E.H. (2014) Carbon Storage in Basalt. Science, 344, 373-374. https://doi.org/10.1126/science.1250828 |
[30] |
Raza, A., Rezaee, R., Gholami, R., Bing, C.H., Nagarajan, R. and Hamid, M.A. (2016) A Screening Criterion for Selection of Suitable CO2 Storage Sites. Journal of Natural Gas Science and Engineering, 28, 317-327. https://doi.org/10.1016/j.jngse.2015.11.053 |
[31] |
Wigand, M., Carey, J.W., Schütt, H., Spangenberg, E. and Erzinger, J. (2008) Geochemical Effects of CO2 Sequestration in Sandstones under Simulated in Situ Conditions of Deep Saline Aquifers. Applied Geochemistry, 23, 2735-2745. https://doi.org/10.1016/j.apgeochem.2008.06.006 |
[32] |
Kelemen, P., Benson, S.M., Pilorgé, H., Psarras, P. and Wilcox, J. (2019) An Overview of the Status and Challenges of CO2 Storage in Minerals and Geological Formations. Frontiers in Climate, 1, Article 9. https://doi.org/10.3389/fclim.2019.00009 |
[33] |
Yadav, S. and Mehra, A. (2021) A Review on Ex Situ Mineral Carbonation. Environmental Science and Pollution Research, 28, 12202-12231. https://doi.org/10.1007/s11356-020-12049-4 |
[34] |
Metz, B., Davidson, O., Coninck, H.D., et al. (2005) IPCC Special Report on Carbon Dioxide Capture and Storage. Intergovernmental Panel on Climate Change (IPCC). |
[35] |
Gislason, S.R., Wolff-Boenisch, D., Stefansson, A., Oelkers, E.H., Gunnlaugsson, E., Sigurdardottir, H., et al. (2010) Mineral Sequestration of Carbon Dioxide in Basalt: A Pre-Injection Overview of the CarbFix Project. International Journal of Greenhouse Gas Control, 4, 537-545. https://doi.org/10.1016/j.ijggc.2009.11.013 |
[36] |
Gislason, S.R. and Oelkers, E.H. (2014) Carbon Storage in Basalt. Science, 344, 373-374. https://doi.org/10.1126/science.1250828 |
[37] |
Kelektsoglou, K. (2018) Carbon Capture and Storage: A Review of Mineral Storage of CO2 in Greece. Sustainability, 10, Article 4400. https://doi.org/10.3390/su10124400 |
[38] |
Ge, J., Zhang, X., Othman, F., Wang, Y., Roshan, H. and Le-Hussain, F. (2020) Effect of Fines Migration and Mineral Reactions on CO2-Water Drainage Relative Permeability. International Journal of Greenhouse Gas Control, 103, Article 103184. https://doi.org/10.1016/j.ijggc.2020.103184 |
[39] |
Raza, A., Glatz, G., Gholami, R., Mahmoud, M. and Alafnan, S. (2022) Carbon Mineralization and Geological Storage of CO2 in Basalt: Mechanisms and Technical Challenges. Earth-Science Reviews, 229, Article 104036. https://doi.org/10.1016/j.earscirev.2022.104036 |
[40] |
李晓媛, 常春, 于青春. CO2矿化封存条件下玄武岩溶解反应速率模型[J]. 现代地质, 2013, 27(6): 1477-1483. |
[41] |
McGrail, B.P., Schaef, H.T., Spane, F.A., Cliff, J.B., Qafoku, O., Horner, J.A. et al. (2016) Field Validation of Supercritical CO2 Reactivity with Basalts. Environmental Science & Technology Letters, 4, 6-10. https://doi.org/10.1021/acs.estlett.6b00387 |
[42] |
Oelkers, E.H. and Cole, D.R. (2008) Carbon Dioxide Sequestration a Solution to a Global Problem. Elements, 4, 305-310. https://doi.org/10.2113/gselements.4.5.305 |
[43] |
吾尔娜, 吴昌志, 季峻峰, 等. 松辽盆地徐家围子断陷玄武岩气藏储层的CO2封存潜力研究[J]. 高校地质学报, 2012, 18(2): 239-247. |
[44] |
Gunnarsson, I., Aradóttir, E.S., Oelkers, E.H., Clark, D.E., Arnarson, M.Þ., Sigfússon, B., et al. (2018) The Rapid and Cost-Effective Capture and Subsurface Mineral Storage of Carbon and Sulfur at the CarbFix2 Site. International Journal of Greenhouse Gas Control, 79, 117-126. https://doi.org/10.1016/j.ijggc.2018.08.014 |
[45] |
Wolff-Boenisch, D., Wenau, S., Gislason, S.R. and Oelkers, E.H. (2011) Dissolution of Basalts and Peridotite in Seawater, in the Presence of Ligands, and CO2: Implications for Mineral Sequestration of Carbon Dioxide. Geochimica et Cosmochimica Acta, 75, 5510-5525. https://doi.org/10.1016/j.gca.2011.07.004 |
[46] |
Snæbjörnsdóttir, S.Ó., Wiese, F., Fridriksson, T., Ármansson, H., Einarsson, G.M. and Gislason, S.R. (2014) CO2 Storage Potential of Basaltic Rocks in Iceland and the Oceanic Ridges. Energy Procedia, 63, 4585-4600. https://doi.org/10.1016/j.egypro.2014.11.491 |
[47] |
Energy Futures Initiative (EFI) (2020) Rock Solid: Harnessing Mineralization for Large-Scale Carbon Management. Energy Futures Initiative (USA), 1-47. |
[48] |
Rubin, E.S., Davison, J.E. and Herzog, H.J. (2015) The Cost of CO2 Capture and Storage. International Journal of Greenhouse Gas Control, 40, 378-400. https://doi.org/10.1016/j.ijggc.2015.05.018 |