[1] |
Koren, E. and Fuchs, Y. (2021) Modes of Regulated Cell Death in Cancer. Cancer Discovery, 11, 245-265. https://doi.org/10.1158/2159-8290.cd-20-0789 |
[2] |
Bertheloot, D., Latz, E. and Franklin, B.S. (2021) Necroptosis, Pyroptosis and Apoptosis: An Intricate Game of Cell Death. Cellular & Molecular Immunology, 18, 1106-1121. https://doi.org/10.1038/s41423-020-00630-3 |
[3] |
Galluzzi, L., Vitale, I., Aaronson, S.A., Abrams, J.M., Adam, D., Agostinis, P., et al. (2018) Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, 25, 486-541. https://doi.org/10.1038/s41418-017-0012-4 |
[4] |
Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042 |
[5] |
Yang, W.S. and Stockwell, B.R. (2008) Synthetic Lethal Screening Identifies Compounds Activating Iron-Dependent, Nonapoptotic Cell Death in Oncogenic-Ras-Harboring Cancer Cells. Chemistry & Biology, 15, 234-245. https://doi.org/10.1016/j.chembiol.2008.02.010 |
[6] |
Friedmann Angeli, J.P., Schneider, M., Proneth, B., Tyurina, Y.Y., Tyurin, V.A., Hammond, V.J., et al. (2014) Inactivation of the Ferroptosis Regulator GPX4 Triggers Acute Renal Failure in Mice. Nature Cell Biology, 16, 1180-1191. https://doi.org/10.1038/ncb3064 |
[7] |
Tang, D., Chen, X., Kang, R. and Kroemer, G. (2020) Ferroptosis: Molecular Mechanisms and Health Implications. Cell Research, 31, 107-125. https://doi.org/10.1038/s41422-020-00441-1 |
[8] |
El Hout, M., Dos Santos, L., Hamaï, A. and Mehrpour, M. (2018) A Promising New Approach to Cancer Therapy: Targeting Iron Metabolism in Cancer Stem Cells. Seminars in Cancer Biology, 53, 125-138. https://doi.org/10.1016/j.semcancer.2018.07.009 |
[9] |
Ryu, M., Zhang, D., Protchenko, O., Shakoury-Elizeh, M. and Philpott, C.C. (2017) PCBP1 and NCOA4 Regulate Erythroid Iron Storage and Heme Biosynthesis. Journal of Clinical Investigation, 127, 1786-1797. https://doi.org/10.1172/jci90519 |
[10] |
Hou, W., Xie, Y., Song, X., Sun, X., Lotze, M.T., Zeh, H.J., et al. (2016) Autophagy Promotes Ferroptosis by Degradation of Ferritin. Autophagy, 12, 1425-1428. https://doi.org/10.1080/15548627.2016.1187366 |
[11] |
Hulbert, A.J., Rana, T. and Couture, P. (2002) The Acyl Composition of Mammalian Phospholipids: An Allometric Analysis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 132, 515-527. https://doi.org/10.1016/s1096-4959(02)00066-0 |
[12] |
Gill, I. and Valivety, R. (1997) Polyunsaturated Fatty Acids, Part 1: Occurrence, Biological Activities and Applications. Trends in Biotechnology, 15, 401-409. https://doi.org/10.1016/s0167-7799(97)01076-7 |
[13] |
Thiele, C. and Spandl, J. (2008) Cell Biology of Lipid Droplets. Current Opinion in Cell Biology, 20, 378-385. https://doi.org/10.1016/j.ceb.2008.05.009 |
[14] |
Doll, S., Proneth, B., Tyurina, Y.Y., Panzilius, E., Kobayashi, S., Ingold, I., et al. (2016) ACSL4 Dictates Ferroptosis Sensitivity by Shaping Cellular Lipid Composition. Nature Chemical Biology, 13, 91-98. https://doi.org/10.1038/nchembio.2239 |
[15] |
Küch, E., Vellaramkalayil, R., Zhang, I., Lehnen, D., Brügger, B., Stremmel, W., et al. (2014) Differentially Localized Acyl-Coa Synthetase 4 Isoenzymes Mediate the Metabolic Channeling of Fatty Acids towards Phosphatidylinositol. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1841, 227-239. https://doi.org/10.1016/j.bbalip.2013.10.018 |
[16] |
Hishikawa, D., Shindou, H., Kobayashi, S., Nakanishi, H., Taguchi, R. and Shimizu, T. (2008) Discovery of a Lysophospholipid Acyltransferase Family Essential for Membrane Asymmetry and Diversity. Proceedings of the National Academy of Sciences of the United States of America, 105, 2830-2835. https://doi.org/10.1073/pnas.0712245105 |
[17] |
Kagan, V.E., Mao, G., Qu, F., Angeli, J.P.F., Doll, S., Croix, C.S., et al. (2016) Oxidized Arachidonic and Adrenic Pes Navigate Cells to Ferroptosis. Nature Chemical Biology, 13, 81-90. https://doi.org/10.1038/nchembio.2238 |
[18] |
Yang, W.S., Kim, K.J., Gaschler, M.M., Patel, M., Shchepinov, M.S. and Stockwell, B.R. (2016) Peroxidation of Polyunsaturated Fatty Acids by Lipoxygenases Drives Ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 113, E4966-E4975. https://doi.org/10.1073/pnas.1603244113 |
[19] |
Diggle, C.P. (2002) In Vitro Studies on the Relationship between Polyunsaturated Fatty Acids and Cancer: Tumour or Tissue Specific Effects? Progress in Lipid Research, 41, 240-253. https://doi.org/10.1016/s0163-7827(01)00025-x |
[20] |
Rice-Evans, C. and Burdon, R. (1993) Free Radical-Lipid Interactions and Their Pathological Consequences. Progress in Lipid Research, 32, 71-110. https://doi.org/10.1016/0163-7827(93)90006-i |
[21] |
Michalski, M., Calzada, C., Makino, A., Michaud, S. and Guichardant, M. (2008) Oxidation Products of Polyunsaturated Fatty Acids in Infant Formulas Compared to Human Milk—A Preliminary Study. Molecular Nutrition & Food Research, 52, 1478-1485. https://doi.org/10.1002/mnfr.200700451 |
[22] |
Funk, C.D., Chen, X., Johnson, E.N. and Zhao, L. (2002) Lipoxygenase Genes and Their Targeted Disruption. Prostaglandins & Other Lipid Mediators, 68, 303-312. https://doi.org/10.1016/s0090-6980(02)00036-9 |
[23] |
Wenzel, S.E., Tyurina, Y.Y., Zhao, J., St. Croix, C.M., Dar, H.H., Mao, G., et al. (2017) PEBP1 Wardens Ferroptosis by Enabling Lipoxygenase Generation of Lipid Death Signals. Cell, 171, 628-641.e26. https://doi.org/10.1016/j.cell.2017.09.044 |
[24] |
Battista, N., Meloni, M.A., Bari, M., Mastrangelo, N., Galleri, G., Rapino, C., et al. (2012) 5‐Lipoxygenase‐Dependent Apoptosis of Human Lymphocytes in the International Space Station: Data from the ROALD Experiment. The FASEB Journal, 26, 1791-1798. https://doi.org/10.1096/fj.11-199406 |
[25] |
Shah, R., Shchepinov, M.S. and Pratt, D.A. (2018) Resolving the Role of Lipoxygenases in the Initiation and Execution of Ferroptosis. ACS Central Science, 4, 387-396. https://doi.org/10.1021/acscentsci.7b00589 |
[26] |
Hou, L., Huang, R., Sun, F., Zhang, L. and Wang, Q. (2019) NADPH Oxidase Regulates Paraquat and Maneb-Induced Dopaminergic Neurodegeneration through Ferroptosis. Toxicology, 417, 64-73. https://doi.org/10.1016/j.tox.2019.02.011 |
[27] |
Zou, Y., Li, H., Graham, E.T., Deik, A.A., Eaton, J.K., Wang, W., et al. (2020) Cytochrome P450 Oxidoreductase Contributes to Phospholipid Peroxidation in Ferroptosis. Nature Chemical Biology, 16, 302-309. https://doi.org/10.1038/s41589-020-0472-6 |
[28] |
Yang, W.S., SriRamaratnam, R., Welsch, M.E., Shimada, K., Skouta, R., Viswanathan, V.S., et al. (2014) Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell, 156, 317-331. https://doi.org/10.1016/j.cell.2013.12.010 |
[29] |
Chen, D., Tavana, O., Chu, B., Erber, L., Chen, Y., Baer, R., et al. (2017) NRF2 Is a Major Target of ARF in P53-Independent Tumor Suppression. Molecular Cell, 68, 224-232.e4. https://doi.org/10.1016/j.molcel.2017.09.009 |
[30] |
Ye, Y., Chen, A., Li, L., Liang, Q., Wang, S., Dong, Q., et al. (2022) Repression of the Antiporter SLC7A11/Glutathione/Glutathione Peroxidase 4 Axis Drives Ferroptosis of Vascular Smooth Muscle Cells to Facilitate Vascular Calcification. Kidney International, 102, 1259-1275. https://doi.org/10.1016/j.kint.2022.07.034 |
[31] |
Zhang, H., He, Y., Wang, J., Chen, M., Xu, J., Jiang, M., et al. (2020) miR-30-5p-Mediated Ferroptosis of Trophoblasts Is Implicated in the Pathogenesis of Preeclampsia. Redox Biology, 29, Article ID: 101402. https://doi.org/10.1016/j.redox.2019.101402 |
[32] |
Li, R., Zhang, X., Gu, L., Yuan, Y., Luo, X., Shen, W., et al. (2023) CDGSH Iron Sulfur Domain 2 Over‐Expression Alleviates Neuronal Ferroptosis and Brain Injury by Inhibiting Lipid Peroxidation via Akt/mTOR Pathway Following Intracerebral Hemorrhage in Mice. Journal of Neurochemistry, 165, 426-444. https://doi.org/10.1111/jnc.15785 |
[33] |
Shangguan, M., Zheng, J., Liu, N., Zhao, J. and Wang, Q. (2024) A Preliminary Study Unveils CISD2 as a Ferroptosis-Related Therapeutic Target for Recurrent Spontaneous Abortion through Immunological Analysis and Two-Sample Mendelian Randomization. Journal of Reproductive Immunology, 163, Article ID: 104249. https://doi.org/10.1016/j.jri.2024.104249 |
[34] |
Dai, F., Zhang, Y., Deng, Z., Zhang, J., Wang, R., Chen, J., et al. (2024) IGF2BP3 Participates in the Pathogenesis of Recurrent Spontaneous Abortion by Regulating Ferroptosis. Journal of Reproductive Immunology, 165, Article ID: 104271. https://doi.org/10.1016/j.jri.2024.104271 |
[35] |
Chen, L., Dai, F., Huang, Y., Chen, J., Li, Z., Liu, H., et al. (2024) Mechanisms of YAP1-Mediated Trophoblast Ferroptosis in Recurrent Pregnancy Loss. Journal of Assisted Reproduction and Genetics, 41, 1669-1685. https://doi.org/10.1007/s10815-024-03096-8 |
[36] |
Lai, Y., Zhang, Y., Zhang, H., Chen, Z., Zeng, L., Deng, G., et al. (2024) Modified Shoutai Pill Inhibited Ferroptosis to Alleviate Recurrent Pregnancy Loss. Journal of Ethnopharmacology, 319, Article ID: 117028. https://doi.org/10.1016/j.jep.2023.117028 |
[37] |
Brown, F.M. and Wyckoff, J. (2017) Application of One-Step IADPSG versus Two-Step Diagnostic Criteria for Gestational Diabetes in the Real World: Impact on Health Services, Clinical Care, and Outcomes. Current Diabetes Reports, 17, Article No. 85. https://doi.org/10.1007/s11892-017-0922-z |
[38] |
Zaugg, J., Melhem, H., Huang, X., Wegner, M., Baumann, M., Surbek, D., et al. (2020) Gestational Diabetes Mellitus Affects Placental Iron Homeostasis: Mechanism and Clinical Implications. The FASEB Journal, 34, 7311-7329. https://doi.org/10.1096/fj.201903054r |
[39] |
Crowther, C.A., Samuel, D., Hughes, R., Tran, T., Brown, J. and Alsweiler, J.M. (2022) Tighter or Less Tight Glycaemic Targets for Women with Gestational Diabetes Mellitus for Reducing Maternal and Perinatal Morbidity: A Stepped-Wedge, Cluster-Randomised Trial. PLOS Medicine, 19, e1004087. https://doi.org/10.1371/journal.pmed.1004087 |
[40] |
Zheng, Y., Hu, Q. and Wu, J. (2021) Adiponectin Ameliorates Placental Injury in Gestational Diabetes Mice by Correcting Fatty Acid Oxidation/Peroxide Imbalance-Induced Ferroptosis via Restoration of CPT-1 Activity. Endocrine, 75, 781-793. https://doi.org/10.1007/s12020-021-02933-5 |
[41] |
Han, D., Jiang, L., Gu, X., Huang, S., Pang, J., Wu, Y., et al. (2020) SIRT3 Deficiency Is Resistant to Autophagy‐dependent Ferroptosis by Inhibiting the AMPK/mTOR Pathway and Promoting GPX4 Levels. Journal of Cellular Physiology, 235, 8839-8851. https://doi.org/10.1002/jcp.29727 |
[42] |
Jiang, J., Gao, H., Zhou, W., Cai, H., Liao, L. and Wang, C. (2023) Circular RNA HIPK3 Facilitates Ferroptosis in Gestational Diabetes Mellitus by Regulating Glutathione Peroxidase 4 DNA Methylation. The Journal of Gene Medicine, 25, e3526. https://doi.org/10.1002/jgm.3526 |
[43] |
Webster, K., Fishburn, S., Maresh, M., Findlay, S.C. and Chappell, L.C. (2019) Diagnosis and Management of Hypertension in Pregnancy: Summary of Updated NICE Guidance. BMJ, 366, L5119. https://doi.org/10.1136/bmj.l5119 |
[44] |
Tew, W.P. (1938) Pre-Eclampsia. Canadian Medical Association Journal, 38, 20-24. |
[45] |
Ng, S., Norwitz, S.G. and Norwitz, E.R. (2019) The Impact of Iron Overload and Ferroptosis on Reproductive Disorders in Humans: Implications for Preeclampsia. International Journal of Molecular Sciences, 20, Article 3283. https://doi.org/10.3390/ijms20133283 |
[46] |
Irwinda, R., Hiksas, R., Siregar, A.A., Saroyo, Y.B. and Wibowo, N. (2021) Long-Chain Polyunsaturated Fatty Acid (LC-PUFA) Status in Severe Preeclampsia and Preterm Birth: A Cross Sectional Study. Scientific Reports, 11, Article No. 14701. https://doi.org/10.1038/s41598-021-93846-w |
[47] |
Liao, T., Xu, X., Ye, X. and Yan, J. (2022) DJ-1 Upregulates the Nrf2/GPX4 Signal Pathway to Inhibit Trophoblast Ferroptosis in the Pathogenesis of Preeclampsia. Scientific Reports, 12, Article No. 2934. https://doi.org/10.1038/s41598-022-07065-y |
[48] |
Aydın, S., Benian, A., Madazli, R., Uludaǧ, S., Uzun, H. and Kaya, S. (2004) Plasma Malondialdehyde, Superoxide Dismutase, Se-Selectin, Fibronectin, Endothelin-1 and Nitric Oxide Levels in Women with Preeclampsia. European Journal of Obstetrics & Gynecology and Reproductive Biology, 113, 21-25. https://doi.org/10.1016/s0301-2115(03)00368-3 |
[49] |
Roland-Zejly, L., Moisan, V., St-Pierre, I. and Bilodeau, J.-F. (2011) Altered Placental Glutathione Peroxidase mRNA Expression in Preeclampsia According to the Presence or Absence of Labor. Placenta, 32, 161-167. https://doi.org/10.1016/j.placenta.2010.11.005 |
[50] |
Yang, X., Ding, Y., Sun, L., Shi, M., Zhang, P., Huang, Z., et al. (2022) Ferritin Light Chain Deficiency-Induced Ferroptosis Is Involved in Preeclampsia Pathophysiology by Disturbing Uterine Spiral Artery Remodelling. Redox Biology, 58, Article ID: 102555. https://doi.org/10.1016/j.redox.2022.102555 |
[51] |
Peng, X., Lin, Y., Li, J., Liu, M., Wang, J., Li, X., et al. (2016) Evaluation of Glutathione Peroxidase 4 Role in Preeclampsia. Scientific Reports, 6, Article No. 33300. https://doi.org/10.1038/srep33300 |
[52] |
Mistry, H.D., Kurlak, L.O., Williams, P.J., Ramsay, M.M., Symonds, M.E. and Broughton Pipkin, F. (2010) Differential Expression and Distribution of Placental Glutathione Peroxidases 1, 3 and 4 in Normal and Preeclamptic Pregnancy. Placenta, 31, 401-408. https://doi.org/10.1016/j.placenta.2010.02.011 |
[53] |
Imai, H., Hirao, F., Sakamoto, T., Sekine, K., Mizukura, Y., Saito, M., et al. (2003) Early Embryonic Lethality Caused by Targeted Disruption of the Mouse PHGPx Gene. Biochemical and Biophysical Research Communications, 305, 278-286. https://doi.org/10.1016/s0006-291x(03)00734-4 |
[54] |
Beharier, O., Tyurin, V.A., Goff, J.P., Guerrero-Santoro, J., Kajiwara, K., Chu, T., et al. (2020) PLA2G6 Guards Placental Trophoblasts against Ferroptotic Injury. Proceedings of the National Academy of Sciences, 117, 27319-27328. https://doi.org/10.1073/pnas.2009201117 |
[55] |
Ramanadham, S., Ali, T., Ashley, J.W., Bone, R.N., Hancock, W.D. and Lei, X. (2015) Calcium-Independent Phospholipases A2 and Their Roles in Biological Processes and Diseases. Journal of Lipid Research, 56, 1643-1668. https://doi.org/10.1194/jlr.r058701 |