[1] |
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834 |
[2] |
Gradishar, W.J., Moran, M.S., Abraham, J., Abramson, V., Aft, R., Agnese, D., et al. (2023) NCCN Guidelines Insights: Breast Cancer, Version 4.2023. Journal of the National Comprehensive Cancer Network, 21, 594-608. https://doi.org/10.6004/jnccn.2023.0031 |
[3] |
Videira, M., Reis, R.L. and Brito, M.A. (2014) Deconstructi ng Breast Cancer Cell Biology and the Mechanisms of Multidrug Resistance. Biochimica et Biophysica Acta—Reviews on Cancer, 1846, 312-325. https://doi.org/10.1016/j.bbcan.2014.07.011 |
[4] |
Vivanco, I. and Sawyers, C.L. (2002) The Phosphatidylinositol 3-Kinase-AKT Pathway in Human Cancer. Nature Reviews Cancer, 2, 489-501. https://doi.org/10.1038/nrc839 |
[5] |
Manning, B.D. and Cantley, L.C. (2007) AKT/PKB Signaling: Navigating Downstream. Cell, 129, 1261-1274. https://doi.org/10.1016/j.cell.2007.06.009 |
[6] |
Zhang, M., Jang, H. and Nussinov, R. (2019) The Mechanism of PI3Kα Activation at the Atomic Level. Chemical Science, 10, 3671-3680. https://doi.org/10.1039/c8sc04498h |
[7] |
Brognard, J., Sierecki, E., Gao, T. and Newton, A.C. (2007) PHLPP and a Second Isoform, PHLPP2, Differentially Attenuate the Amplitude of Akt Signaling by Regulating Distinct Akt Isoforms. Molecular Cell, 25, 917-931. https://doi.org/10.1016/j.molcel.2007.02.017 |
[8] |
Lu, Y., Yu, M., Jia, Y., Yang, F., Zhang, Y., Xu, X., et al. (2022) Structural Basis for the Activity Regulation of a Potassium Channel AKT1 from Arabidopsis. Nature Communications, 13, Article No. 5682. https://doi.org/10.1038/s41467-022-33420-8 |
[9] |
Fattahi, S., Amjadi-Moheb, F., Tabaripour, R., Ashrafi, G.H. and Akhavan-Niaki, H. (2020) PI3K/Akt/mTOR Signaling in Gastric Cancer: Epigenetics and Beyond. Life Sciences, 262, Article 118513. https://doi.org/10.1016/j.lfs.2020.118513 |
[10] |
Tan, A.C. (2020) Targeting the PI3K/Akt/mTOR Pathway in Non-Small Cell Lung Cancer (NSCLC). Thoracic Cancer, 11, 511-518. https://doi.org/10.1111/1759-7714.13328 |
[11] |
Ediriweera, M.K., Tennekoon, K.H. and Samarakoon, S.R. (2019) Role of the PI3K/Akt/mTOR Signaling Pathway in Ovarian Cancer: Biological and Therapeutic Significance. Seminars in Cancer Biology, 59, 147-160. https://doi.org/10.1016/j.semcancer.2019.05.012 |
[12] |
Browne, I.M., André, F., Chandarlapaty, S., Carey, L.A. and Turner, N.C. (2024) Optimal Targeting of PI3K-AKT and mTOR in Advanced Oestrogen Receptor-Positive Breast Cancer. The Lancet Oncology, 25, e139-e151. https://doi.org/10.1016/s1470-2045(23)00676-9 |
[13] |
Stefani, C., Miricescu, D., Stanescu-Spinu, I., Nica, R.I., Greabu, M., Totan, A.R., et al. (2021) Growth Factors, PI3K/Akt/mTOR and MAPK Signaling Pathways in Colorectal Cancer Pathogenesis: Where Are We Now? International Journal of Molecular Sciences, 22, Article 10260. https://doi.org/10.3390/ijms221910260 |
[14] |
Glaviano, A., Foo, A.S.C., Lam, H.Y., Yap, K.C.H., Jacot, W., Jones, R.H., et al. (2023) PI3K/Akt/mTOR Signaling Transduction Pathway and Targeted Therapies in Cancer. Molecular Cancer, 22, Article No. 138. https://doi.org/10.1186/s12943-023-01827-6 |
[15] |
Gelmon, K., Dent, R., Mackey, J.R., Laing, K., McLeod, D. and Verma, S. (2012) Targeting Triple-Negative Breast Cancer: Optimising Therapeutic Outcomes. Annals of Oncology, 23, 2223-2234. https://doi.org/10.1093/annonc/mds067 |
[16] |
Nunnery, S.E. and Mayer, I.A. (2020) Targeting the PI3K/Akt/mTOr Pathway in Hormone-Positive Breast Cancer. Drugs, 80, 1685-1697. https://doi.org/10.1007/s40265-020-01394-w |
[17] |
Pan, L., Li, J., Xu, Q., Gao, Z., Yang, M., Wu, X., et al. (2024) HER2/PI3K/AKT Pathway in Her2-Positive Breast Cancer: A Review. Medicine, 103, e38508. https://doi.org/10.1097/md.0000000000038508 |
[18] |
Bertucci, A., Bertucci, F. and Gonçalves, A. (2023) Phosphoinositide 3-Kinase (PI3K) Inhibitors and Breast Cancer: An Overview of Current Achievements. Cancers, 15, Article 1416. https://doi.org/10.3390/cancers15051416 |
[19] |
LoRusso, P.M. (2016) Inhibition of the PI3K/Akt/mTOR Pathway in Solid Tumors. Journal of Clinical Oncology, 34, 3803-3815. https://doi.org/10.1200/jco.2014.59.0018 |
[20] |
Fritsch, C., Huang, A., Chatenay-Rivauday, C., Schnell, C., Reddy, A., Liu, M., et al. (2014) Characterization of the Novel and Specific PI3Kα Inhibitor NVP-BYL719 and Development of the Patient Stratification Strategy for Clinical Trials. Molecular Cancer Therapeutics, 13, 1117-1129. https://doi.org/10.1158/1535-7163.mct-13-0865 |
[21] |
Juric, D., Rodon, J., Tabernero, J., Janku, F., Burris, H.A., Schellens, J.H.M., et al. (2018) Phosphatidylinositol 3-Kinase Α-Selective Inhibition with Alpelisib (BYL719) in PIK3CA-Altered Solid Tumors: Results from the First-in-Human Study. Journal of Clinical Oncology, 36, 1291-1299. https://doi.org/10.1200/jco.2017.72.7107 |
[22] |
Juric, D., Krop, I., Ramanathan, R.K., Wilson, T.R., Ware, J.A., Sanabria Bohorquez, S.M., et al. (2017) Phase I Dose-Escalation Study of Taselisib, an Oral PI3K Inhibitor, in Patients with Advanced Solid Tumors. Cancer Discovery, 7, 704-715. https://doi.org/10.1158/2159-8290.cd-16-1080 |
[23] |
Sarker, D., Ang, J.E., Baird, R., Kristeleit, R., Shah, K., Moreno, V., et al. (2015) First-in-Human Phase I Study of Pictilisib (GDC-0941), a Potent Pan-Class I Phosphatidylinositol-3-Kinase (PI3K) Inhibitor, in Patients with Advanced Solid Tumors. Clinical Cancer Research, 21, 77-86. https://doi.org/10.1158/1078-0432.ccr-14-0947 |
[24] |
Ando, Y., Inada-Inoue, M., Mitsuma, A., Yoshino, T., Ohtsu, A., Suenaga, N., et al. (2014) Phase I Dose-Escalation Study of Buparlisib (BKM120), an Oral Pan-Class I PI3K Inhibitor, in Japanese Patients with Advanced Solid Tumors. Cancer Science, 105, 347-353. https://doi.org/10.1111/cas.12350 |
[25] |
Maira, S., Stauffer, F., Brueggen, J., Furet, P., Schnell, C., Fritsch, C., et al. (2008) Identification and Characterization of NVP-BEZ235, a New Orally Available Dual Phosphatidylinositol 3-Kinase/Mammalian Target of Rapamycin Inhibitor with Potent in Vivo Antitumor Activity. Molecular Cancer Therapeutics, 7, 1851-1863. https://doi.org/10.1158/1535-7163.mct-08-0017 |
[26] |
Nitulescu, G.M., Margina, D., Juzenas, P., Peng, Q., Olaru, O.T., Saloustros, E., et al. (2015) Akt Inhibitors in Cancer Treatment: The Long Journey from Drug Discovery to Clinical Use (Review). International Journal of Oncology, 48, 869-885. https://doi.org/10.3892/ijo.2015.3306 |
[27] |
Mohd Sharial, M.S.N., Crown, J. and Hennessy, B.T. (2012) Overcoming Resistance and Restoring Sensitivity to Her2-Targeted Therapies in Breast Cancer. Annals of Oncology, 23, 3007-3016. https://doi.org/10.1093/annonc/mds200 |
[28] |
Baselga, J., Campone, M., Piccart, M., Burris, H.A., Rugo, H.S., Sahmoud, T., et al. (2012) Everolimus in Postmenopausal Hormone-Receptor-Positive Advanced Breast Cancer. New England Journal of Medicine, 366, 520-529. https://doi.org/10.1056/nejmoa1109653 |
[29] |
Decker, T., Söling, U., Hahn, A., Maintz, C., Kurbacher, C.M., Vehling-Kaiser, U., et al. (2020) Final Results from IMPROVE: A Randomized, Controlled, Open-Label, Two-Arm, Cross-Over Phase IV Study to Determine Patients’ Preference for Everolimus in Combination with Exemestane or Capecitabine in Combination with Bevacizumab in Advanced HR-Positive, Her2-Negative Breast Cancer. BMC Cancer, 20, Article No. 286. https://doi.org/10.1186/s12885-020-06747-y |
[30] |
Cook, M.M., Al Rabadi, L., Kaempf, A.J., Saraceni, M.M., Savin, M.A. and Mitri, Z.I. (2020) Everolimus Plus Exemestane Treatment in Patients with Metastatic Hormone Receptor-Positive Breast Cancer Previously Treated with CDK4/6 Inhibitor Therapy. The Oncologist, 26, 101-106. https://doi.org/10.1002/onco.13609 |
[31] |
Wolff, A.C., Lazar, A.A., Bondarenko, I., Garin, A.M., Brincat, S., Chow, L., et al. (2013) Randomized Phase III Placebo-Controlled Trial of Letrozole Plus Oral Temsirolimus as First-Line Endocrine Therapy in Postmenopausal Women with Locally Advanced or Metastatic Breast Cancer. Journal of Clinical Oncology, 31, 195-202. https://doi.org/10.1200/jco.2011.38.3331 |
[32] |
Guerrero-Zotano, A., Mayer, I.A. and Arteaga, C.L. (2016) PI3K/Akt/mTOR: Role in Breast Cancer Progression, Drug Resistance, and Treatment. Cancer and Metastasis Reviews, 35, 515-524. https://doi.org/10.1007/s10555-016-9637-x |
[33] |
Miranda, F., Prazeres, H., Mendes, F., Martins, D. and Schmitt, F. (2021) Resistance to Endocrine Therapy in HR and/or HER2+ Breast Cancer: The Most Promising Predictive Biomarkers. Molecular Biology Reports, 49, 717-733. https://doi.org/10.1007/s11033-021-06863-3 |
[34] |
Zou, Z., Zhang, J., Zhang, H., Liu, H., Li, Z., Cheng, D., et al. (2014) 3-Methyladenine Can Depress Drug Efflux Transporters via Blocking the PI3K-Akt-mTOR Pathway Thus Sensitizing MDR Cancer to Chemotherapy. Journal of Drug Targeting, 22, 839-848. https://doi.org/10.3109/1061186x.2014.936870 |
[35] |
Beelen, K., Hoefnagel, L.D.C., Opdam, M., Wesseling, J., Sanders, J., Vincent, A.D., et al. (2014) PI3K/Akt/mTOR Pathway Activation in Primary and Corresponding Metastatic Breast Tumors after Adjuvant Endocrine Therapy. International Journal of Cancer, 135, 1257-1263. https://doi.org/10.1002/ijc.28769 |
[36] |
Campbell, R.A., Bhat-Nakshatri, P., Patel, N.M., Constantinidou, D., Ali, S. and Nakshatri, H. (2001) Phosphatidylinositol 3-Kinase/Akt-Mediated Activation of Estrogen Receptor Α. Journal of Biological Chemistry, 276, 9817-9824. https://doi.org/10.1074/jbc.m010840200 |
[37] |
Li, D., Ji, H., Niu, X., Yin, L., Wang, Y., Gu, Y., et al. (2019) Tumor-Associated Macrophages Secrete CC-Chemokine Ligand 2 and Induce Tamoxifen Resistance by Activating PI3K/Akt/mTOR in Breast Cancer. Cancer Science, 111, 47-58. https://doi.org/10.1111/cas.14230 |
[38] |
Sanchez, C.G., Ma, C.X., Crowder, R.J., Guintoli, T., Phommaly, C., Gao, F., et al. (2011) Preclinical Modeling of Combined Phosphatidylinositol-3-Kinase Inhibition with Endocrine Therapy for Estrogen Receptor-Positive Breast Cancer. Breast Cancer Research, 13, R21. https://doi.org/10.1186/bcr2833 |
[39] |
Cavazzoni, A., Bonelli, M.A., Fumarola, C., La Monica, S., Airoud, K., Bertoni, R., et al. (2012) Overcoming Acquired Resistance to Letrozole by Targeting the PI3K/Akt/mTOR Pathway in Breast Cancer Cell Clones. Cancer Letters, 323, 77-87. https://doi.org/10.1016/j.canlet.2012.03.034 |
[40] |
Piccart, M., Hortobagyi, G.N., Campone, M., Pritchard, K.I., Lebrun, F., Ito, Y., et al. (2014) Everolimus Plus Exemestane for Hormone-Receptor-Positive, Human Epidermal Growth Factor Receptor-2-Negative Advanced Breast Cancer: Overall Survival Results from Bolero-2. Annals of Oncology, 25, 2357-2362. https://doi.org/10.1093/annonc/mdu456 |
[41] |
Bachelot, T., Bourgier, C., Cropet, C., Guastalla, J., Ferrero, J., Leger-Falandry, C., et al. (2010) Abstract S1-6: TAMRAD: A GINECO Randomized Phase II Trial of Everolimus in Combination with Tamoxifen versus Tamoxifen Alone in Patients (pts) with Hormone-Receptor Positive, HER2 Negative Metastatic Breast Cancer (MBC) with Prior Exposure to Aromatase Inhibitors (AI). Cancer Research, 70, S1-S6. https://doi.org/10.1158/0008-5472.sabcs10-s1-6 |
[42] |
Baselga, J., Im, S., Iwata, H., Cortés, J., De Laurentiis, M., Jiang, Z., et al. (2017) Buparlisib Plus Fulvestrant versus Placebo Plus Fulvestrant in Postmenopausal, Hormone Receptor-Positive, Her2-Negative, Advanced Breast Cancer (BELLE-2): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. The Lancet Oncology, 18, 904-916. https://doi.org/10.1016/s1470-2045(17)30376-5 |
[43] |
Jones, R.H., Casbard, A., Carucci, M., Cox, C., Butler, R., Alchami, F., et al. (2020) Fulvestrant Plus Capivasertib versus Placebo after Relapse or Progression on an Aromatase Inhibitor in Metastatic, Oestrogen Receptor-Positive Breast Cancer (FAKTION): A Multicentre, Randomised, Controlled, Phase 2 Trial. The Lancet Oncology, 21, 345-357. https://doi.org/10.1016/s1470-2045(19)30817-4 |
[44] |
Saura, C., Hlauschek, D., Oliveira, M., Zardavas, D., Jallitsch-Halper, A., de la Peña, L., et al. (2019) Neoadjuvant Letrozole Plus Taselisib versus Letrozole Plus Placebo in Postmenopausal Women with Oestrogen Receptor-Positive, Her2-Negative, Early-Stage Breast Cancer (LORELEI): A Multicentre, Randomised, Double-Blind, Placebo-Controlled, Phase 2 Trial. The Lancet Oncology, 20, 1226-1238. https://doi.org/10.1016/s1470-2045(19)30334-1 |
[45] |
Maji, S., Panda, S., Samal, S.K., Shriwas, O., Rath, R., Pellecchia, M., et al. (2018) BCL-2 Antiapoptotic Family Proteins and Chemoresistance in Cancer. In: Advances in Cancer Research, Elsevier, 37-75. https://doi.org/10.1016/bs.acr.2017.11.001 |
[46] |
Higgins, C.F. (2007) Multiple Molecular Mechanisms for Multidrug Resistance Transporters. Nature, 446, 749-757. https://doi.org/10.1038/nature05630 |
[47] |
Zhu, Y., Liu, Y., Zhang, C., Chu, J., Wu, Y., Li, Y., et al. (2018) Tamoxifen-Resistant Breast Cancer Cells Are Resistant to DNA-Damaging Chemotherapy Because of Upregulated BARD1 and BRCA1. Nature Communications, 9, Article No. 1595. https://doi.org/10.1038/s41467-018-03951-0 |
[48] |
Li, Y., Weng, H., Hsu, J., Lin, S., Guh, J. and Hsu, L. (2019) The Combination of MK-2206 and WZB117 Exerts a Synergistic Cytotoxic Effect against Breast Cancer Cells. Frontiers in Pharmacology, 10, Article 1311. https://doi.org/10.3389/fphar.2019.01311 |
[49] |
Hu, Y., Guo, R., Wei, J., Zhou, Y., Ji, W., Liu, J., et al. (2015) Effects of PI3K Inhibitor NVP-BKM120 on Overcoming Drug Resistance and Eliminating Cancer Stem Cells in Human Breast Cancer Cells. Cell Death & Disease, 6, e2020-e2020. https://doi.org/10.1038/cddis.2015.363 |
[50] |
Loibl, S., de la Pena, L., Nekljudova, V., Zardavas, D., Michiels, S., Denkert, C., et al. (2017) Neoadjuvant Buparlisib Plus Trastuzumab and Paclitaxel for Women with HER2+ Primary Breast Cancer: A Randomised, Double-Blind, Placebo-Controlled Phase II Trial (Neophoebe). European Journal of Cancer, 85, 133-145. https://doi.org/10.1016/j.ejca.2017.08.020 |
[51] |
Kim, S., Dent, R., Im, S., Espié, M., Blau, S., Tan, A.R., et al. (2017) Ipatasertib Plus Paclitaxel versus Placebo Plus Paclitaxel as First-Line Therapy for Metastatic Triple-Negative Breast Cancer (LOTUS): A Multicentre, Randomised, Double-Blind, Placebo-Controlled, Phase 2 Trial. The Lancet Oncology, 18, 1360-1372. https://doi.org/10.1016/s1470-2045(17)30450-3 |
[52] |
Wu, X., Yang, H., Yu, X. and Qin, J. (2022) Drug-Resistant HER2-Positive Breast Cancer: Molecular Mechanisms and Overcoming Strategies. Frontiers in Pharmacology, 13, Article 1012552. https://doi.org/10.3389/fphar.2022.1012552 |
[53] |
Dey, N., Williams, C., Leyland-Jones, B. and De, P. (2015) A Critical Role for HER3 in HER2-Amplified and Non-Amplified Breast Cancers: Function of a Kinase-Dead RTK. American Journal of Translational Research, 7, 733-750. |
[54] |
Fujimoto, Y., Morita, T.Y., Ohashi, A., Haeno, H., Hakozaki, Y., Fujii, M., et al. (2020) Combination Treatment with a PI3K/Akt/mTOR Pathway Inhibitor Overcomes Resistance to Anti-HER2 Therapy in PIK3CA-Mutant HER2-Positive Breast Cancer Cells. Scientific Reports, 10, Article No. 21762. https://doi.org/10.1038/s41598-020-78646-y |
[55] |
Maira, S., Pecchi, S., Huang, A., Burger, M., Knapp, M., Sterker, D., et al. (2012) Identification and Characterization of NVP-BKM120, an Orally Available Pan-Class I PI3-Kinase Inhibitor. Molecular Cancer Therapeutics, 11, 317-328. https://doi.org/10.1158/1535-7163.mct-11-0474 |
[56] |
García-García, C., Ibrahim, Y.H., Serra, V., Calvo, M.T., Guzmán, M., Grueso, J., et al. (2012) Dual Mtorc1/2 and HER2 Blockade Results in Antitumor Activity in Preclinical Models of Breast Cancer Resistant to Anti-HER2 Therapy. Clinical Cancer Research, 18, 2603-2612. https://doi.org/10.1158/1078-0432.ccr-11-2750 |
[57] |
Brünner-Kubath, C., Shabbir, W., Saferding, V., Wagner, R., Singer, C.F., Valent, P., et al. (2010) The PI3 Kinase/mTOR Blocker NVP-BEZ235 Overrides Resistance against Irreversible ErbB Inhibitors in Breast Cancer Cells. Breast Cancer Research and Treatment, 129, 387-400. https://doi.org/10.1007/s10549-010-1232-1 |
[58] |
Hurvitz, S.A., Andre, F., Jiang, Z., Shao, Z., Mano, M.S., Neciosup, S.P., et al. (2015) Combination of Everolimus with Trastuzumab Plus Paclitaxel as First-Line Treatment for Patients with HER2-Positive Advanced Breast Cancer (BOLERO-1): A Phase 3, Randomised, Double-Blind, Multicentre Trial. The Lancet Oncology, 16, 816-829. https://doi.org/10.1016/s1470-2045(15)00051-0 |
[59] |
Isaacs, C., Ozguroglu, M., Jerusalem, G., Xu, B., Láng, I., O'Regan, R., et al. (2013) Abstract P4-12-18: BOLERO-3: Quality-of-Life Maintained in Patients with Metastatic Breast Cancer Treated with Everolimus Plus Trastuzumab Plus Vinorelbine. Cancer Research, 73, P4-12-18. https://doi.org/10.1158/0008-5472.sabcs13-p4-12-18 |
[60] |
Gianni, L., Pienkowski, T., Im, Y., Tseng, L., Liu, M., Lluch, A., et al. (2016) 5-Year Analysis of Neoadjuvant Pertuzumab and Trastuzumab in Patients with Locally Advanced, Inflammatory, or Early-Stage HER2-Positive Breast Cancer (Neosphere): A Multicentre, Open-Label, Phase 2 Randomised Trial. The Lancet Oncology, 17, 791-800. https://doi.org/10.1016/s1470-2045(16)00163-7 |
[61] |
Cortesi, L., Rugo, H.S. and Jackisch, C. (2021) An Overview of PARP Inhibitors for the Treatment of Breast Cancer. Targeted Oncology, 16, 255-282. https://doi.org/10.1007/s11523-021-00796-4 |
[62] |
Menezes, M., Raheem, F., Mina, L., Ernst, B. and Batalini, F. (2022) PARP Inhibitors for Breast Cancer: Germline BRCA1/2 and beyond. Cancers, 14, Article 4332. https://doi.org/10.3390/cancers14174332 |
[63] |
Li, H., Liu, Z., Wu, N., Chen, Y., Cheng, Q. and Wang, J. (2020) PARP Inhibitor Resistance: The Underlying Mechanisms and Clinical Implications. Molecular Cancer, 19, Article No. 107. https://doi.org/10.1186/s12943-020-01227-0 |
[64] |
De, P., Sun, Y., Carlson, J.H., Friedman, L.S., Leyland-Jones, B.R. and Dey, N. (2014) Doubling down on the PI3K-Akt-mTOR Pathway Enhances the Antitumor Efficacy of PARP Inhibitor in Triple Negative Breast Cancer Model Beyond BRCA-Ness. Neoplasia, 16, 43-W19. https://doi.org/10.1593/neo.131694 |
[65] |
Tapodi, A., Bognar, Z., Szabo, C., Gallyas, F., Sumegi, B. and Hocsak, E. (2019) PARP Inhibition Induces Akt-Mediated Cytoprotective Effects through the Formation of a Mitochondria-Targeted Phospho-Atm-Nemo-Akt-mTOR Signalosome. Biochemical Pharmacology, 162, 98-108. https://doi.org/10.1016/j.bcp.2018.10.005 |
[66] |
Tai, Y., Chow, A., Han, S., Coker, C., Ma, W., Gu, Y., et al. (2024) FLT1 Activation in Cancer Cells Promotes Parp-Inhibitor Resistance in Breast Cancer. EMBO Molecular Medicine, 16, 1957-1980. https://doi.org/10.1038/s44321-024-00094-2 |
[67] |
Liu, Z., Zuo, T., Xu, F. and Xu, P. (2021) CDK4/6 Signaling Pathway and Its Targeted Therapeutic Agents in Cancer Therapy: A Review. Chinese Journal of Biotechnology, 37, 2232-2239. |
[68] |
刘子齐, 左涛, 徐锋, 徐平. CDK4/6信号通路靶向治疗剂在癌症治疗中的研究进展[J]. 生物工程学报, 2021, 37(7): 2232-2239. |
[69] |
Michaloglou, C., Crafter, C., Siersbaek, R., Delpuech, O., Curwen, J.O., Carnevalli, L.S., et al. (2018) Combined Inhibition of mTOR and CDK4/6 Is Required for Optimal Blockade of E2F Function and Long-Term Growth Inhibition in Estrogen Receptor-Positive Breast Cancer. Molecular Cancer Therapeutics, 17, 908-920. https://doi.org/10.1158/1535-7163.mct-17-0537 |
[70] |
Rugo, H.S., Lerebours, F., Ciruelos, E., Drullinsky, P., Ruiz-Borrego, M., Neven, P., et al. (2021) Alpelisib Plus Fulvestrant in PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer after a CDK4/6 Inhibitor (BYLieve): One Cohort of a Phase 2, Multicentre, Open-Label, Non-Comparative Study. The Lancet Oncology, 22, 489-498. https://doi.org/10.1016/s1470-2045(21)00034-6 |
[71] |
Soare, G.R. and Soare, C.A. (2019) Immunotherapy for Breast Cancer: First FDA Approved Regimen. Discoveries, 7, e91. https://doi.org/10.15190/d.2019.4 |