精氨酸加压素及其受体的结构与功能研究进展
Research Progress on the Structure and Function of Arginine Vasopressin and Its Receptor
DOI: 10.12677/hjbm.2025.152040, PDF, HTML, XML,   
作者: 姚菊霞, 尹万超:中国科学院上海药物研究所,上海;中国科学院大学,北京
关键词: 精氨酸加压素V1a受体V1b受体V2受体结构与功能分析Arginine Vasopressin V1aR V1bR V2R Structural and Functional Analysis
摘要: 精氨酸加压素(Arginine Vasopressin, AVP),又称抗利尿激素(Antidiuretic Hormone, ADH),是一种由下丘脑合成的环状九肽神经激素,在机体水盐平衡和血压稳态调节中发挥核心调控作用。AVP通过特异性结合G蛋白偶联受体(G Protein-Coupled Receptor, GPCR)家族成员V1受体(Vasopressin type 1 receptor, V1R)和V2受体(Vasopressin type 2 receptor, V2R)介导其生理功能:V1R主要分布于血管平滑肌,参与调控血管张力及血小板活化;V2R则高表达于肾脏集合管和远端肾小管,通过调节水通道蛋白2 (Aquaporin-2, AQP2)的膜转运介导水的重吸收。近年来,随着冷冻电子显微镜(Cryogenic Electron Microscopy, Cryo-EM)等结构生物学技术的突破,研究人员成功解析了AVP受体复合物的高分辨率三维结构,为阐明其配体识别机制和信号转导途径提供了重要的结构基础。这些研究成果不仅深化了对AVP信号通路的分子机制理解,也为基于结构的精准药物设计提供了新思路。基于V1R和V2R结构特征开发的高选择性配体有望为高血压、尿崩症等疾病的治疗提供更安全有效的治疗方案。
Abstract: Arginine vasopressin (AVP), also known as antidiuretic hormone (ADH), is a cyclic nonapeptide neurohormone synthesized in the hypothalamus, playing a critical role in maintaining water-electrolyte balance and blood pressure homeostasis. AVP mediates its effects through specific binding to G protein-coupled receptors (GPCRs), primarily V1R and V2R. V1R is predominantly expressed in vascular smooth muscle, where it regulates vascular tone and platelet activation, V2R is highly expressed in the renal collecting ducts and distal nephron, where V2R orchestrates water reabsorption by modulating the membrane trafficking of aquaporin-2 (AQP2). In recent years, with the breakthroughs in structural biology techniques such as Cryogenic Electron Microscopy (Cryo-EM), researchers have successfully determined the high-resolution three-dimensional structure of the arginine vasopressin (AVP) receptor complex. This achievement provides a crucial structural foundation for elucidating the ligand recognition mechanism and signal transduction pathway of the AVP receptor. These research findings not only deepen our understanding of the molecular mechanisms underlying the AVP signaling pathway but also offer novel insights into structure-based precision drug design. Highly selective ligands developed based on the structural characteristics of V1R (vasopressin receptor 1) and V2R (vasopressin receptor 2) hold great promise for providing safer and more effective therapeutic strategies for diseases such as hypertension and diabetes insipidus.
文章引用:姚菊霞, 尹万超. 精氨酸加压素及其受体的结构与功能研究进展[J]. 生物医学, 2025, 15(2): 339-349. https://doi.org/10.12677/hjbm.2025.152040

1. 引言

精氨酸加压素(Arginine Vasopressin, AVP)是一种由下丘脑合成并储存于神经垂体的环状九肽激素,在维持机体水盐平衡和血压稳态中发挥核心调控作用[1]。AVP于下丘脑的视上核(Supraoptic Nucleus, SON)和室旁核(Paraventricular Nucleus, PVN)处,由大细胞神经元合成,经蛋白酶的切割加工,通过轴突运输转运至神经垂体后释放入血,其分泌受多重精密调控:血浆渗透压变化通过下丘脑渗透压感受器调节,而血容量改变则通过心房和颈动脉窦的压力感受器传递信号[2] [3]。AVP生理功能的发挥依赖于对两种G蛋白偶联受体(G Protein-Coupled Receptor, GPCR)的激活作用:V1受体(Vasopressin type 1 receptor, V1R)主要分布于血管平滑肌,介导血管收缩和血小板活化;V2受体(Vasopressin type 2 receptor, V2R)则特异性表达于肾脏集合管主细胞,通过cAMP-PKA信号通路调控水通道蛋白2 (Aquaporin-2, AQP2)的膜转运,从而调节水的重吸收[4] [5]。基于这些机制,V2R选择性激动剂去氨加压素(Desmopressin, DDAVP)已成功应用于中枢性尿崩症和夜间遗尿症的治疗,而V2R拮抗剂托伐普坦(Tolvaptan)则被批准用于治疗低钠血症和常染色体显性多囊肾病[6] [7]。值得注意的是,尽管V1R和V2R具有约40%的序列同源性,但它们在组织分布、信号转导和生理功能上表现出显著差异,这为GPCR功能多样性的研究提供了重要参考依据[3] [8]。近年来,由于生物大分子结构解析技术的进步,尤其是冷冻电镜技术的快速推进,研究者们成功解析了AVP受体和不同信号转导蛋白复合物的高分辨率三维结构,揭示了配体识别、受体激活和信号转导的分子机制[9]-[13]。这些结构生物学研究不仅深化了我们对AVP信号通路的理解,也为开发高选择性配体提供了重要的理论依据,推动了基于结构的精准药物设计。

2. AVP受体的表达分布与生理功能

2.1. V1a受体

V1a受体(Vasopressin type1a Receptor, V1aR)是AVP激活的受体亚型之一,广泛参与心血管稳态、应激反应和代谢调节等多种生理功能。V1aR在血管平滑肌细胞中高表达,同时在肾脏血管、髓质和皮质区也有分布[14]。V1aR激活后与Gq/11蛋白偶联,启动磷脂酶Cβ (Phospholipase Cβ, PLCβ)介导的信号级联反应:PLCβ催化磷脂酰肌醇4,5-二磷酸(Phosphatidylinositol-4,5-bisphosphate, PIP2)水解,生成1,4,5-三磷酸肌醇(Inositol-1,4,5-trisphosphate, IP3)和二酰基甘油(Diacylglycerol, DAG)。IP3与内质网IP3受体结合,引起Ca2+释放,导致胞内Ca2+浓度升高,进而通过钙调蛋白依赖性机制引起血管平滑肌收缩[15] [16]。除了在血管调节中的作用外,V1aR还参与血小板的聚集与血栓的形成,在止血过程中起重要作用[17]。在中枢神经系统中,V1aR通过调节下丘脑–垂体–肾上腺轴(Hypothalamic Pituitary Adrenal Axis, HPA轴)的应激反应,通过调节促肾上腺皮质激素释放激素(Corticotropin Releasing Hormone, CRH)的分泌影响焦虑和应激相关行为[18] [19]。在生殖系统中,V1aR在子宫肌层特异性表达,通过调节前列腺素和催产素的协同作用,增加细胞内的Ca2+浓度,参与分娩过程中的子宫收缩和产后止血[20]。此外,AVP通过激活肝脏中的V1aR,促进糖原分解和糖异生,从而维持血糖稳态[21]。这些研究表明,V1aR通过组织特异性的信号转导机制,在多个生理系统中发挥关键的调控作用。

2.2. V1b受体

V1b受体(Vasopressin type 1b Receptor, V1bR),也称为V3受体,主要分布于垂体前叶促肾上腺皮质激素(Adrenocorticotropic Hormone, ACTH)分泌细胞,在调节HPA轴中发挥关键作用[22]。V1bR通过与Gq/11蛋白偶联,激活PLCβ-蛋白激酶C (Protein Kinase C, PKC)信号通路,同时触发细胞内钙离子动员,协同促进ACTH的合成与释放,调控糖皮质激素的分泌[2] [22]。基因功能研究证实,V1bR基因敲除小鼠表现出基础ACTH和皮质醇水平降低,且对外源性AVP刺激的反应性显著减弱[23]。临床研究发现,V1bR信号通路的异常激活与多种精神疾病相关:抑郁症患者脑脊液中AVP水平升高,且与HPA轴亢进呈正相关;焦虑症患者也表现出类似的V1bR信号通路过度激活特征[24]。这些发现提示,选择性V1bR拮抗剂可能通过调节HPA轴功能,治疗应激相关精神疾病[25]

2.3. V2受体

V2受体(Vasopressin type 2 Receptor, V2R)主要表达于肾脏集合管主细胞,是调节机体水平衡的关键受体[26]。在肾组织中,V2R通过和Gs蛋白偶联,进而激活腺苷酸环化酶(Adenylate Cyclase, AC),使细胞内cAMP水平升高,激活蛋白激酶A (Protein Kinase A, PKA)信号通路,PKA介导AQP2的磷酸化,促进AQP2从胞内囊泡向顶质膜转运,增加集合管对水的通透性,从而调节水的重吸收和尿液浓缩[27] [28]。除肾脏外,V2R在血管内皮细胞和平滑肌细胞中也有功能性表达:在血管内皮细胞中,激活V2R可促进血管性血友病因子(von Willebrand Factor, vWF)以及凝血因子VIII的释放;在血管平滑肌细胞中,V2R通过cAMP-PKA通路诱导血管舒张[29] [30]。基于这些机制,V2R选择性激动剂去氨加压素被广泛应用于中枢性尿崩症、夜间遗尿症以及血友病A和血管性血友病的治疗[26]。值得注意的是,V2R介导的AQP2转运调控涉及复杂的分子机制,除了经典的cAMP-PKA信号通路外,微管重组、肌动蛋白细胞骨架重塑以及AQP2的泛素化修饰等过程,也共同参与调控AQP2的膜转运动力学[31] [32]。深入研究V2R的信号转导机制及其调控网络,不仅有助于阐明水盐代谢的生理调控机制,还为新型利尿剂和抗利尿药物提供了重要的理论依据。

3. AVP受体相关的疾病

3.1. V1aR相关疾病

V1aR的异常激活与多种系统性疾病的发生发展密切相关,使其成为重要的治疗靶点。在心血管系统,V1aR通过激活PLCβ-IP3-Ca2+信号通路,诱导血管平滑肌持续收缩,导致外周血管阻力增加和血压升高[33]。在心衰患者中,V1aR的过度活化会导致心脏后负荷增加,促进心室重构,使心功能恶化加重[34]。同时,V1aR能通过上调内皮细胞中P-选择素以及血管细胞黏附分子-1 (Vascular Cell Adhesion Molecule-1, VCAM-1)的表达量,促进血小板的激活和白细胞的黏附,增加动脉粥样硬化与血栓形成的风险[35]。在生殖系统中,V1aR激活后,增强子宫平滑肌收缩,从而增加产后出血和痛经的风险[36] [37]。在肾脏系统中,V1aR通过双重机制影响肾功能:一方面通过收缩直小血管减少肾髓质血流,另一方面通过拮抗V2R的抗利尿作用,这些机制共同参与了糖尿病肾病和慢性肾脏病的进展[38] [39]。在神经系统中,V1aR通过调节前扣带皮层和杏仁核的神经元活动,参与慢性疼痛和情绪障碍的病理过程,临床前研究表明V1aR拮抗剂可显著改善神经性疼痛和类似抑郁的行为[40]。在消化系统中,V1aR通过调控胃壁细胞质子泵活性和胃肠道平滑肌张力,影响胃酸分泌和胃肠道运动,其异常激活与消化性溃疡和炎症性肠病的发生相关[41]。这些研究结果表明,V1aR在多个系统的病理生理过程中发挥关键作用,开发高选择性V1aR调节剂可能为相关疾病的治疗提供新的策略。

3.2. V1bR相关疾病

V1bR在神经内分泌调节和代谢稳态中发挥关键作用,其功能异常与多种疾病密切相关。在肾脏系统中,V1bR可能通过调节肾脏对AVP的响应,间接影响AQP2功能,参与尿液浓缩[42],并通过影响下丘脑对水的调节,参与神经性尿崩症的病理过程[40]。在精神疾病领域,V1bR通过调节ACTH分泌,激活HPA轴,在应激反应和情绪调节中发挥核心作用,长期应激导致的V1bR信号通路过度激活与重度抑郁症和广泛性焦虑症的病理过程密切相关[25] [43]。V1bR拮抗剂在动物模型中表现出显著的抗焦虑和抗抑郁效果,显示其作为精神疾病潜在治疗靶点的可能性[44]。在内分泌代谢方面,V1bR的异常激活可能导致皮质醇分泌失调,这不仅为库欣综合征的发病机制提供了新的解释[45],还与多种代谢紊乱(如高血糖、肥胖、骨质疏松等)相关[2] [46]。此外,V1bR还能调节免疫反应和炎症反应,在自身免疫性疾病和慢性应激状态下的免疫过度反应中发挥作用[47]。综上,V1bR在精神健康和内分泌功能相关疾病中发挥重要作用,开发高选择性V1bR调节剂可能为相关疾病的个体化治疗提供新的策略。

3.3. V2R相关疾病

V2R功能异常与多种疾病密切相关,其中最具代表性的是中枢性尿崩症(Central Diabetes Insipidus, CDI)和肾源性尿崩症(Nephrogenic Diabetes Insipidus, NDI),CDI主要是由下丘脑或神经垂体中的AVP合成与分泌的不足引起,导致V2R激活水平降低,肾脏的集合管对水的重吸收功能障碍。患者表现为多尿(4~20 L/d)、烦渴和低渗尿(尿渗透压 < 300 mOsm/kg) [48]。目前,V2R选择性激动剂去氨加压素是CDI的标准治疗方案,可有效改善水重吸收,缓解临床症状[32]。而NDI的产生是由于肾脏对AVP的响应性降低导致,大约百分之九十的病例与V2R的基因突变相关联,NDI患者表现出更严重的多尿和电解质紊乱,治疗策略包括限制钠盐摄入、应用噻嗪类利尿剂和V2R拮抗剂托伐普坦[49]

除尿崩症外,V2R功能异常还与其他系统疾病相关。在肾脏疾病中,V2R信号通路异常与Bartter综合征的发生有关,该病以钠钾氯协同转运蛋白(Na-K-2Cl Cotransporter, NKCC2)功能障碍为特征[50]。在心血管系统,V2R的过度激活可导致水钠潴留,加重高血压和心力衰竭的病理过程[51]。近年来研究发现,V2R在中枢神经系统的异常激活可能与神经精神疾病相关:全基因组关联研究(Genome-Wide Association Study, GWAS)发现,基因多态性和自闭症谱系障碍(Autism Spectrum Disorder, ASD)的易感性存在关联;临床前研究也提示V2R可能通过调节社会行为和情绪反应参与抑郁症的病理过程[52] [53]。这些发现表明,V2R在不同系统的疾病中发挥重要作用,开发组织选择性的V2R调节剂可能为相关疾病的精准治疗提供新的方向。

4. AVP受体相关配体及治疗应用

4.1. V1aR的配体与治疗应用

V1aR配体的研发在多个治疗领域取得了显著进展,展现出广阔的应用前景。在尿崩症治疗方面,天然AVP及其类似物仍是完全性尿崩症的首选药物,通过激活V2R促进水重吸收[54]。其合成类似物去氨加压素具有更长的半衰期和更高的V2R选择性,已广泛用于治疗中枢性尿崩症和夜间遗尿症[55]。选择性V1aR拮抗剂Relcovaptan (SR49059)在II期临床试验中显示出良好的疗效,通过阻断V1aR介导的PLC-IP3-Ca2+-PKC信号通路,减少血管收缩和炎症反应,可显著缓解原发性痛经患者的疼痛症状(疼痛评分降低约40%),并改善雷诺病患者的末梢循环[56] [57]。肿瘤治疗方面,Relcovaptan在去势抵抗性前列腺癌(Castration Resistant Prostate Cancer, CRPC)模型中表现出双重作用:不仅可抑制肿瘤原位生长(抑制率达60%),还能减少骨转移发生率(降低约50%) [58]。Conivaptan作为首个获批的V1aR/V2R双拮抗剂,已用于治疗等容性和高容性低钠血症,其独特的作用机制可有效纠正水电解质紊乱[59] [60]。在神经精神疾病领域,选择性V1aR拮抗剂Balovaptan (RG7314)在自闭症谱系障碍的II期临床试验中显示出改善核心症状的潜力:可显著提高社交反应量表(Social Responsiveness Scale, SRS)评分,并改善情绪管理能力[61]。这些研究进展表明,V1aR配体在多个治疗领域具有重要应用价值。未来研究应着重提高配体的受体选择性和组织靶向性,同时探索其在个体化治疗中的应用潜力。

4.2. V1bR的配体与治疗应用

[亮氨酸4,赖氨酸8] d型氨基酸取代–加压素醋酸盐(d [Leu4, Lys8]-vasopressin acetate, d [Leu4, Lys8]-VP acetate)是一种经过结构优化的AVP类似物,其第4位和第8位氨基酸分别被D-亮氨酸和D-赖氨酸取代。这种独特的结构修饰显著提高了其对V1bR的选择性(Ki = 0.8 nM),同时降低了V2R亲和力(Ki > 1000 nM) [62]。药理学研究表明,d [Leu4, Lys8]-VP acetate的抗利尿活性仅为天然AVP的1/1000,且几乎不引起血管收缩效应。其激动作用主要通过激活PI3K/Akt信号通路和升高细胞内Ca2+浓度(EC50 = 2.3 nM)来实现,为研究V1bR功能提供了重要工具[63]。在V1bR拮抗剂研发方面,奈利伐坦(Nelivaptan, SSR149415)作为首个高选择性V1bR拮抗剂,具有较高的口服生物利用度[64]。在慢性应激模型中,奈利伐坦可显著抑制ACTH的过度分泌(抑制率达65%),并改善焦虑样行为,临床II期试验显示,Nelivaptan可有效缓解广泛性焦虑症患者的临床症状(HAMA评分降低30%) [65]。新型V1bR拮抗剂TASP0390325则表现出更高的受体选择性(Ki = 0.6 nM)和口服生物利用度(F = 78%),在强迫游泳实验中,TASP0390325可显著减少不动时间(减少约50%);在嗅球切除模型中,可逆转抑郁样行为[66]。这些研究结果表明,V1bR配体通过精确调控HPA轴功能,在治疗焦虑症和抑郁症等精神疾病方面具有重要应用价值。未来研究应着重探索V1bR信号通路的组织特异性,开发具有更好血脑屏障穿透性的新型配体,为精神疾病的精准治疗提供新的策略。

4.3. V2R的配体与治疗应用

V2R配体的研发在多个治疗领域取得了显著进展,为相关疾病的治疗提供了新的选择。在尿崩症治疗方面,去氨加压素作为V2R激动剂,广泛用于治疗原发性夜间遗尿症,通过激活V2R促进水重吸收,显著减少尿量[67]。在低钠血症治疗领域中,托伐普坦(Tolvaptan)是第一个口服的V2R拮抗剂,通过与V2R的关键残基(如R181、Y205、F287、F178)相互作用拮抗V2R,抑制AQP2表达和膜转位,促进自由水排泄,其可显著提高血清钠浓度,已被批准用于抗利尿激素分泌异常综合征和心衰相关低钠血症的治疗[68]。新型V2R配体药物的研发进一步拓宽了治疗应用范围。OPC-51803作为首个非肽类口服V2R激动剂,具有更高的生物利用度(F = 65%)和更长的半衰期(约8~10 h),在治疗夜尿症和膀胱过度活动症方面展现出良好前景[69]。Ixivaptan (VPA-985)作为选择性V2R拮抗剂,可快速纠正低钠血症(24 h尿量增加2~3倍),且不引起明显的电解质紊乱[70]。Mozavaptan (OPC-31260)则通过双重机制发挥作用:既拮抗V2R促进利尿,又抑制肾素–血管紧张素系统活性,在充血性心力衰竭患者中显示出良好的液体调节效果[71]。这些研究进展表明,V2R配体在泌尿系统疾病、电解质紊乱和心血管疾病的治疗中具有重要的应用价值。通过优化药理机制和进一步临床试验,这些化合物有望为相关疾病提供新突破,丰富临床治疗选择。

5. AVP受体的结构研究进展

5.1. 托伐普坦与V2R结合

V2R是常染色体显性多囊肾病的潜在治疗靶点,托伐普坦作为该领域中首个获得FDA批准的拮抗剂,其与V2R结合的机制成为了研究人员关注的焦点[72]。2024年Bernard Mouillac等人通过冷冻电镜技术,解析了V2R与托伐普坦以及曼巴奎雷丁毒素(Mambaquaretin toxin, MQ1)结合的复合物结构[73]。托伐普坦和MQ1K39A均占据AVP正构结合口袋,但结合方式不同。托伐普坦于口袋底部中心作用,与13个V2R残基主要通过疏水及极性作用接触,稳定V2R并阻止跨膜域6 (Transmembrane domain 6, TM6)外移。MQ1K39A与结合口袋周边及胞外残基作用,涉及23个受体残基,多为极性接触,MQ1K39A通过空间阻断受体结合位点来堵塞口袋入口。二者有7个共有的跨膜结合位点残基,托伐普坦结合更深。此外,V2R激活时跨膜结构域和整体构象会改变。通过定点诱变和结合测定实验发现,不同残基突变对配体亲和力影响不同,关键残基作用机制得以分析,部分关键残基对MQ1与V2R高亲和力结合至关重要,MQ1结合特异性或源于与V2R胞外空间大量相互作用。郭栋等人通过计算模拟与实验验证了托伐普坦和V2R的结合过程及机制,并以突变实验验证关键残基作用。托伐普坦的结合分两阶段:首先,它与胞外环2 (Extracellular Loop 2, ECL2)、ECL3残基经氢键和疏水作用相互吸引,处于“陷阱”状态,长时间停留于外部环区域;之后托伐普坦突破该作用,克服能量屏障进入结合口袋,形成稳定结合态。在结合口袋内,托伐普坦与Q291、Y205、A194等多个关键残基通过氢键和疏水作用稳定结合,其结合能量主要依赖TM3、ECL2、TM5、TM6、TM7区域的M123、F178等残基,这些残基对托伐普坦的拮抗作用起决定性影响。研究还发现,托伐普坦结合口袋与内源性肽类激动剂结合位点部分重叠,表明这些关键残基或同时影响V2R激动剂和拮抗剂功能[9]。这些发现对未来V2R拮抗剂的结构优化和新药的开发具有重要的参考价值。

5.2. AVP激活的人V2R-Gs复合物结构

上海药物所H. Eric Xu团队和香港中文大学(深圳)医学院杜洋团队分别通过冷冻电镜技术解析了人源V2R与AVP以及Gs的三维结构,分辨率分别为2.6 Å和2.8 Å,该结构揭示了AVP如何通过其分子内二硫键形成的环状结构与V2R的正构结合口袋特异性结合,AVP的环状结构插入TM核心,与胞外环1 (Extracellular Loop 1, ECL1)的特定氨基酸残基(如R104)形成氢键,AVP与V2R的结合涉及多个重要的氢键和疏水相互作用,包括AVP的Cys1P与V2R的Q962.61、K1163.29等残基之间的氢键网络,以及AVP的Phe3P与V2R的多个疏水性残基(如M1203.33、Y2055.38等)之间的相互作用[12] [13]。AVP的结合导致V2R的构象变化,特别是通过“Toggle switch”W2846.48的旋转,引发TM6的旋转和向外位移,这是GPCR激活的标志,AVP的结合还促使TM7发生扭曲,这一过程由AVP的Tyr2P残基与V2R的L3127.40之间的氢键稳定,通过与其他A类GPCR的结构比较,发现V2R的激活机制具有独特性,尤其是在TM5和TM6的外移幅度较小,导致V2R与Gs蛋白的相互作用界面较小,这些差异可能解释了V2R特有的Gs偶联机制和下游信号转导[13]。杜洋团队还通过结构细节,阐释了一些与V2R突变相关的疾病分子机制,如引起肾性尿崩症的F287L突变、M123R/K突变,还有引起肾性抗利尿不适当综合征(Nephrogenic Syndrome of Inappropriate Antidiuresis, NSIAD)的R137L突变,为研究与V2R相关的疾病提供了结构基础[12]。该研究为针对V2R的药物靶点设计提供了思路,深入理解AVP与V2R的结合机制,可以为设计V2R拮抗剂或激动剂提供理论基础。

5.3. V2R和β-Arrestin1复合物

β-arrestin1是一类重要的支架蛋白和信号调控因子,与G蛋白偶联受体激酶(G Protein-Coupled Receptor Kinase, GRK)协同作用,可使GPCRs对激动剂的敏感性降低,引发受体脱敏,并介导受体的内吞作用[74]-[76]。山东大学孙金鹏团队与法国Julien Bous的研究均聚焦于V2R与β-arrestin1复合物,利用冷冻电镜技术解析结构,并探究磷酸化模式对其功能的影响,两者都揭示了磷酸化位点对β-arrestin1构象及与下游信号分子结合的关键作用,为GPCR-arrestin信号传递机制和V2R相关药物开发提供了新见解[10] [11]。孙金鹏团队着重于不同磷酸化模式下V2R的磷酸化C末端短肽与β-arrestin1复合物的结构解析,通过荧光共振能量转移(Fluorescence Resonance Energy Transfer, FRET)、质子核磁共振(Proton Nuclear Magnetic Resonance, 1H NMR)和生物发光共振能量转移(Bioluminescence Resonance Energy Transfer, BRET)实验,验证了磷酸化模式对信号通路的调节作用,特别是对c-Raf-1和MEK1结合的影响[10]。而Julien Bous则探讨了βarr1与V2R的结合方式对信号激活的影响,强调了AVP-V2R-βarr1ΔCT-ScFv30复合物中βarr1ΔCT的非典型位置和倾斜角度,其特殊取向和倾斜构象有助于在高度弯曲的亚细胞结构中稳定相互作用,进而影响信号传递,以及与AVP-V2R-Gs复合物的比较,指出Gs蛋白和βarr1不能同时结合,揭示了基于空间位阻的脱敏机制[11]。综上所述,孙金鹏团队与Julien Bous的研究成果从不同角度深入剖析了V2R与β-arrestin1复合物的结构与功能,为理解GPCR-arrestin信号传递机制及V2R相关药物研发提供了重要理论依据和新思路。

6. 未来展望

AVP及其受体在医学研究和临床治疗中的重要性日益凸显。近年来,结构生物学技术的突破性进展,特别是Cryo-EM技术的应用,使研究者得以在原子水平解析V2R的三维结构,这不仅深化了对其配体识别和激活机制的理解,也为基于结构的药物设计提供了重要理论依据。随着分子生物学技术的进步,ADH受体的结构和功能将得到更深入的研究,进而促进选择性更高、副作用更小的药物开发。

人工智能和机器学习在药物研发中的应用正在革新AVP相关药物的开发模式,提升研究效率。在V2R药物研发中,高分辨率结构解析技术有望揭示AVP识别模式及V2R激活机制,为靶向V2R的药物设计提供坚实基础。随着医疗向个性化方向发展,AVP治疗方案将更加精准,进一步提高治疗效果和患者生活质量。未来,AVP研究将向多维度拓展:一是基于受体的拮抗剂和激动剂开发,通过结构生物学和计算机辅助药物设计等多种技术组合解析AVP受体动态构象变化,开发新拮抗剂,对现有的拮抗剂进行结构优化,设计部分激动剂或者组织特异性激动剂;二是开发靶向特定信号通路的药物,如调节下游信号分子(蛋白激酶等)及相关交叉信号通路的关键分子,或影响受体转运和定位的药物;三是基于疾病机制开发药物,像针对心衰和低钠血症开发联合治疗药物、调节协同离子通道或转运体,以及在肿瘤免疫、代谢疾病中开发调节受体的药物;四是建立个性化医疗和药物筛选平台,可以根据基因变异开发更具有针对性的个性化药物,应用细胞和动物模型、体外重构系统筛选新药物。通过这些方法可开发更具靶向性、针对性、安全有效的药物治疗方案。这些进展将推动AVP从传统的水盐调节领域向更广泛的临床应用拓展,为复杂疾病的治疗提供新的解决方案。

致 谢

感谢为本文提供帮助的赵宏深,刘恒,谢文沁。

参考文献

[1] Yoshimura, M., Conway-Campbell, B. and Ueta, Y. (2021) Arginine Vasopressin: Direct and Indirect Action on Metabolism. Peptides, 142, Article ID: 170555.
https://doi.org/10.1016/j.peptides.2021.170555
[2] Sato-Numata, K., Numata, T., Ueta, Y. and Okada, Y. (2021) Vasopressin Neurons Respond to Hyperosmotic Stimulation with Regulatory Volume Increase and Secretory Volume Decrease by Activating Ion Transporters and Ca2+ Channels. Cellular Physiology & Biochemistry, 55, 119-134.
https://doi.org/10.33594/000000342
[3] Morris, M. and Alexander, N. (1989) Baroreceptor Influences on Oxytocin and Vasopressin Secretion. Hypertension, 13, 110-114.
[4] Grinevich, V. and Ludwig, M. (2021) The Multiple Faces of the Oxytocin and Vasopressin Systems in the Brain. Journal of Neuroendocrinology, 33, e13004.
https://doi.org/10.1111/jne.13004
[5] Bankir, L., Guerrot, D. and Bichet, D.G. (2021) Vaptans or Voluntary Increased Hydration to Protect the Kidney: How Do They Compare? Nephrology Dialysis Transplantation, 38, 562-574.
https://doi.org/10.1093/ndt/gfab278
[6] Ghanavati, P.M., Khazaeli, D. and Amjadzadeh, M. (2021) A Comparison of the Efficacy and Tolerability of Treating Primary Nocturnal Enuresis with Solifenacin Plus Desmopressin, Tolterodine Plus Desmopressin, and Desmopressin Alone: A Randomized Controlled Clinical Trial. International braz j urol, 47, 73-81.
https://doi.org/10.1590/s1677-5538.ibju.2019.0448
[7] Schrier, R.W., Gross, P., Gheorghiade, M., Berl, T., Verbalis, J.G., Czerwiec, F.S., et al. (2006) Tolvaptan, a Selective Oral Vasopressin V2-Receptor Antagonist, for Hyponatremia. New England Journal of Medicine, 355, 2099-2112.
https://doi.org/10.1056/nejmoa065181
[8] Policarpo, M., Baldwin, M.W., Casane, D. and Salzburger, W. (2024) Diversity and Evolution of the Vertebrate Chemoreceptor Gene Repertoire. Nature Communications, 15, Article No. 1421.
https://doi.org/10.1038/s41467-024-45500-y
[9] Liu, H., Zhong, H., Zhang, Y., Xue, H., Zhang, Z., Fu, K., et al. (2024) Structural Basis of Tolvaptan Binding to the Vasopressin V2 Receptor. Acta Pharmacologica Sinica, 45, 2441-2449.
https://doi.org/10.1038/s41401-024-01325-5
[10] He, Q., Xiao, P., Huang, S., Jia, Y., Zhu, Z., Lin, J., et al. (2021) Structural Studies of Phosphorylation-Dependent Interactions between the V2R Receptor and Arrestin-2. Nature Communications, 12, Article No. 2396.
https://doi.org/10.1038/s41467-021-22731-x
[11] Bous, J., Fouillen, A., Orcel, H., Trapani, S., Cong, X., Fontanel, S., et al. (2022) Structure of the Vasopressin Hormone-V2 Receptor-β-Arrestin1 Ternary Complex. Science Advances, 8, eabo7761.
https://doi.org/10.1126/sciadv.abo7761
[12] Wang, L., Xu, J., Cao, S., Sun, D., Liu, H., Lu, Q., et al. (2021) Cryo-EM Structure of the AVP-Vasopressin Receptor 2-GS Signaling Complex. Cell Research, 31, 932-934.
https://doi.org/10.1038/s41422-021-00483-z
[13] Zhou, F., Ye, C., Ma, X., Yin, W., Croll, T.I., Zhou, Q., et al. (2021) Molecular Basis of Ligand Recognition and Activation of Human V2 Vasopressin Receptor. Cell Research, 31, 929-931.
https://doi.org/10.1038/s41422-021-00480-2
[14] Fujiwara, Y., Tanoue, A., Tsujimoto, G. and Koshimizu, T. (2011) The Roles of V1a Vasopressin Receptors in Blood Pressure Homeostasis: A Review of Studies on V1a Receptor Knockout Mice. Clinical and Experimental Nephrology, 16, 30-34.
https://doi.org/10.1007/s10157-011-0497-y
[15] Brands, J., Bravo, S., Jürgenliemke, L., Grätz, L., Schihada, H., Frechen, F., et al. (2024) A Molecular Mechanism to Diversify Ca2+ Signaling Downstream of GS Protein-Coupled Receptors. Nature Communications, 15, Article No. 7684.
https://doi.org/10.1038/s41467-024-51991-6
[16] Umemori, H., Inoue, T., Kume, S., Sekiyama, N., Nagao, M., Itoh, H., et al. (1997) Activation of the G Protein Gq/11 through Tyrosine Phosphorylation of the α Subunit. Science, 276, 1878-1881.
https://doi.org/10.1126/science.276.5320.1878
[17] Murasawa, S., Matsubara, H., Kizima, K., Maruyama, K., Mori, Y. and Inada, M. (1995) Glucocorticoids Regulate V1a Vasopressin Receptor Expression by Increasing mRNA Stability in Vascular Smooth Muscle Cells. Hypertension, 26, 665-669.
https://doi.org/10.1161/01.hyp.26.4.665
[18] Szczepanska-Sadowska, E., Czarzasta, K., Bogacki-Rychlik, W. and Kowara, M. (2024) The Interaction of Vasopressin with Hormones of the Hypothalamo-Pituitary-Adrenal Axis: The Significance for Therapeutic Strategies in Cardiovascular and Metabolic Diseases. International Journal of Molecular Sciences, 25, Article 7394.
[19] Carter, C.S. (2017) The Oxytocin-Vasopressin Pathway in the Context of Love and Fear. Frontiers in Endocrinology, 8, Article 356.
https://doi.org/10.3389/fendo.2017.00356
[20] Tsuchiya, H., Fujimura, S., Fujiwara, Y. and Koshimizu, T.A. (2020) Critical Role of V1a Vasopressin Receptor in Murine Parturition. Biology of Reproduction, 102, 923-934.
https://doi.org/10.1093/biolre/ioz220
[21] Perrier, E.T., Armstrong, L.E., Bottin, J.H., Clark, W.F., Dolci, A., Guelinckx, I., et al. (2021) Hydration for Health Hypothesis: A Narrative Review of Supporting Evidence. European Journal of Nutrition, 60, 1167-1180.
[22] Ślusarz, M.J. (2024) Structural Basis for Antagonist Binding to Vasopressin V1b Receptor Revealed by the Molecular Dynamics Simulations. Biopolymers, 116, e23627.
https://doi.org/10.1002/bip.23627
[23] Tanoue, A., Ito, S., Honda, K., Oshikawa, S., Kitagawa, Y., Koshimizu, T., et al. (2004) The Vasopressin V1b Receptor Critically Regulates Hypothalamic-Pituitary-Adrenal Axis Activity under Both Stress and Resting Conditions. Journal of Clinical Investigation, 113, 302-309.
https://doi.org/10.1172/jci19656
[24] Iob, E., Kirschbaum, C. and Steptoe, A. (2019) Persistent Depressive Symptoms, HPA-Axis Hyperactivity, and Inflammation: The Role of Cognitive-Affective and Somatic Symptoms. Molecular Psychiatry, 25, 1130-1140.
https://doi.org/10.1038/s41380-019-0501-6
[25] Török, B., Fazekas, C.L., Szabó, A. and Zelena, D. (2021) Epigenetic Modulation of Vasopressin Expression in Health and Disease. International Journal of Molecular Sciences, 22, Article 9415.
https://doi.org/10.3390/ijms22179415
[26] Erdélyi, L.S., Hunyady, L. and Balla, A. (2023) V2 Vasopressin Receptor Mutations: Future Personalized Therapy Based on Individual Molecular Biology. Frontiers in Endocrinology, 14, Article 1173601.
https://doi.org/10.3389/fendo.2023.1173601
[27] Wang, L., Guo, W., Fang, C., Feng, W., Huang, Y., Zhang, X., et al. (2021) Functional Characterization of a Loss-Of-Function Mutant I324M of Arginine Vasopressin Receptor 2 in X-Linked Nephrogenic Diabetes Insipidus. Scientific Reports, 11, Article No. 11057.
https://doi.org/10.1038/s41598-021-90736-z
[28] Felline, A., Bellucci, L., Vezzi, V., Ambrosio, C., Cotecchia, S. and Fanelli, F. (2024) Structural Plasticity of Arrestin-G Protein Coupled Receptor Complexes as a Molecular Determinant of Signaling. International Journal of Biological Macromolecules, 283, Article ID: 137217.
https://doi.org/10.1016/j.ijbiomac.2024.137217
[29] Xiang, Y. and Hwa, J. (2016) Regulation of VWF Expression, and Secretion in Health and Disease. Current Opinion in Hematology, 23, 288-293.
https://doi.org/10.1097/moh.0000000000000230
[30] Gal, C.S. (2001) An Overview of SR121463, a Selective Non‐Peptide Vasopressin V2 Receptor Antagonist. Cardiovascular Drug Reviews, 19, 201-214.
https://doi.org/10.1111/j.1527-3466.2001.tb00065.x
[31] Ranieri, M., Di Mise, A., Tamma, G. and Valenti, G. (2019) Vasopressin-Aquaporin-2 Pathway: Recent Advances in Understanding Water Balance Disorders. F1000Research, 8, Article 149.
https://doi.org/10.12688/f1000research.16654.1
[32] Noda, Y., Horikawa, S., Kanda, E., Yamashita, M., Meng, H., Eto, K., et al. (2008) Reciprocal Interaction with G-Actin and Tropomyosin Is Essential for Aquaporin-2 Trafficking. The Journal of Cell Biology, 182, 587-601.
https://doi.org/10.1083/jcb.200709177
[33] Lozić, M., Šarenac, O., Murphy, D. and Japundžić-Žigon, N. (2018) Vasopressin, Central Autonomic Control and Blood Pressure Regulation. Current Hypertension Reports, 20, Article No. 11.
https://doi.org/10.1007/s11906-018-0811-0
[34] Wasilewski, M.A., Grisanti, L.A., Song, J., Carter, R.L., Repas, A.A., Myers, V.D., et al. (2016) Vasopressin Type 1A Receptor Deletion Enhances Cardiac Contractility, β-Adrenergic Receptor Sensitivity and Acute Cardiac Injury-Induced Dysfunction. Clinical Science, 130, 2017-2027.
https://doi.org/10.1042/cs20160363
[35] Pickett, J.R., Wu, Y., Zacchi, L.F. and Ta, H.T. (2023) Targeting Endothelial Vascular Cell Adhesion Molecule-1 in Atherosclerosis: Drug Discovery and Development of Vascular Cell Adhesion Molecule-1-Directed Novel Therapeutics. Cardiovascular Research, 119, 2278-2293.
https://doi.org/10.1093/cvr/cvad130
[36] Rabow, S., Jonsson, H., Bro, E. and Olofsson, P. (2023) Cardiovascular Effects of Oxytocin and Carbetocin at Cesarean Section. A Prospective Double-Blind Randomized Study Using Noninvasive Pulse Wave Analysis. The Journal of Maternal-Fetal & Neonatal Medicine, 36, Article ID: 2208252.
https://doi.org/10.1080/14767058.2023.2208252
[37] Li, X., Du, Y., Han, X., Wang, H., Sheng, Y., Lian, F., et al. (2023) Efficacy of Atosiban for Repeated Implantation Failure in Frozen Embryo Transfer Cycles. Scientific Reports, 13, Article No. 9277.
https://doi.org/10.1038/s41598-023-36286-y
[38] Torres, V.E. (2009) Vasopressin in Chronic Kidney Disease: An Elephant in the Room? Kidney International, 76, 925-928.
https://doi.org/10.1038/ki.2009.325
[39] Piani, F., Reinicke, T., Lytvyn, Y., Melena, I., Lovblom, L.E., Lai, V., et al. (2021) Vasopressin Associated with Renal Vascular Resistance in Adults with Longstanding Type 1 Diabetes with and without Diabetic Kidney Disease. Journal of Diabetes and Its Complications, 35, Article ID: 107807.
https://doi.org/10.1016/j.jdiacomp.2020.107807
[40] Christ‐Crain, M., Winzeler, B. and Refardt, J. (2021) Diagnosis and Management of Diabetes Insipidus for the Internist: An Update. Journal of Internal Medicine, 290, 73-87.
https://doi.org/10.1111/joim.13261
[41] Harada, K., Wada, E., Osuga, Y., Shimizu, K., Uenoyama, R., Hirai, M.Y., et al. (2025) Intestinal Butyric Acid-Mediated Disruption of Gut Hormone Secretion and Lipid Metabolism in Vasopressin Receptor-Deficient Mice. Molecular Metabolism, 91, Article ID: 102072.
https://doi.org/10.1016/j.molmet.2024.102072
[42] Angelousi, A., Alexandraki, K.I., Mytareli, C., Grossman, A.B. and Kaltsas, G. (2023) New Developments and Concepts in the Diagnosis and Management of Diabetes Insipidus (AVP‐Deficiency and Resistance). Journal of Neuroendocrinology, 35, e13233.
https://doi.org/10.1111/jne.13233
[43] Juruena, M.F., Eror, F., Cleare, A.J. and Young, A.H. (2020) The Role of Early Life Stress in HPA Axis and Anxiety. In: Kim, Y.K., Eds., Anxiety Disorders, Springer, 141-153.
https://doi.org/10.1007/978-981-32-9705-0_9
[44] Goutier, W., Kloeze, M. and McCreary, A.C. (2014) Nicotine‐Induced Locomotor Sensitization: Pharmacological Analyses with Candidate Smoking Cessation Aids. Addiction Biology, 21, 234-241.
https://doi.org/10.1111/adb.12190
[45] Raff, H. and Carroll, T. (2015) Cushing’s Syndrome: From Physiological Principles to Diagnosis and Clinical Care. The Journal of Physiology, 593, 493-506.
https://doi.org/10.1113/jphysiol.2014.282871
[46] Nakamura, K., Velho, G. and Bouby, N. (2017) Vasopressin and Metabolic Disorders: Translation from Experimental Models to Clinical Use. Journal of Internal Medicine, 282, 298-309.
https://doi.org/10.1111/joim.12649
[47] Vanya, M., Szucs, S., Vetro, A. and Bartfai, G. (2017) The Potential Role of Oxytocin and Perinatal Factors in the Pathogenesis of Autism Spectrum Disorders—Review of the Literature. Psychiatry Research, 247, 288-290.
https://doi.org/10.1016/j.psychres.2016.12.007
[48] Rinschen, M.M., Schermer, B. and Benzing, T. (2014) Vasopressin-2 Receptor Signaling and Autosomal Dominant Polycystic Kidney Disease: From Bench to Bedside and Back Again. Journal of the American Society of Nephrology, 25, 1140-1147.
https://doi.org/10.1681/asn.2013101037
[49] Prosperi, F., Suzumoto, Y., Marzuillo, P., Costanzo, V., Jelen, S., Iervolino, A., et al. (2020) Characterization of Five Novel Vasopressin V2 Receptor Mutants Causing Nephrogenic Diabetes Insipidus Reveals a Role of Tolvaptan for M272R-V2R Mutation. Scientific Reports, 10, Article No. 16383.
https://doi.org/10.1038/s41598-020-73089-x
[50] Fukuyama, S., Okudaira, S., Yamazato, S., Yamazato, M. and Ohta, T. (2003) Analysis of Renal Tubular Electrolyte Transporter Genes in Seven Patients with Hypokalemic Metabolic Alkalosis. Kidney International, 64, 808-816.
https://doi.org/10.1046/j.1523-1755.2003.00163.x
[51] Hernandez, M., Sullivan, R.D., McCune, M.E., Reed, G.L. and Gladysheva, I.P. (2022) Sodium-Glucose Cotransporter-2 Inhibitors Improve Heart Failure with Reduced Ejection Fraction Outcomes by Reducing Edema and Congestion. Diagnostics, 12, Article 989.
https://doi.org/10.3390/diagnostics12040989
[52] Cataldo, I., Azhari, A. and Esposito, G. (2018) A Review of Oxytocin and Arginine-Vasopressin Receptors and Their Modulation of Autism Spectrum Disorder. Frontiers in Molecular Neuroscience, 11, Article 27.
https://doi.org/10.3389/fnmol.2018.00027
[53] Rigney, N., de Vries, G.J. and Petrulis, A. (2023) Modulation of Social Behavior by Distinct Vasopressin Sources. Frontiers in Endocrinology, 14, Article 1127792.
https://doi.org/10.3389/fendo.2023.1127792
[54] Verbalis, J.G. (2020) Acquired Forms of Central Diabetes Insipidus: Mechanisms of Disease. Best Practice & Research Clinical Endocrinology & Metabolism, 34, Article ID: 101449.
https://doi.org/10.1016/j.beem.2020.101449
[55] Leissinger, C., Carcao, M., Gill, J.C., Journeycake, J., Singleton, T. and Valentino, L. (2013) Desmopressin (DDAVP) in the Management of Patients with Congenital Bleeding Disorders. Haemophilia, 20, 158-167.
https://doi.org/10.1111/hae.12254
[56] Brouard, R., Bossmar, T., Fournié‐Lloret, D., Chassard, D. and Åkerlund, M. (2000) Effect of SR49059, an Orally Active V1a Vasopressin Receptor Antagonist, in the Prevention of Dysmenorrhoea. BJOG: An International Journal of Obstetrics & Gynaecology, 107, 614-619.
https://doi.org/10.1111/j.1471-0528.2000.tb13302.x
[57] Ponzoni, L., Braida, D., Bondiolotti, G. and Sala, M. (2017) The Non-Peptide Arginine-Vasopressin V1a Selective Receptor Antagonist, SR49059, Blocks the Rewarding, Prosocial, and Anxiolytic Effects of 3,4-Methylenedioxymethamphetamine and Its Derivatives in Zebra Fish. Frontiers in Psychiatry, 8, Article 146.
https://doi.org/10.3389/fpsyt.2017.00146
[58] Zhao, N., Peacock, S.O., Lo, C.H., Heidman, L.M., Rice, M.A., Fahrenholtz, C.D., et al. (2019) Arginine Vasopressin Receptor 1a Is a Therapeutic Target for Castration-Resistant Prostate Cancer. Science Translational Medicine, 11, eaaw4636.
https://doi.org/10.1126/scitranslmed.aaw4636
[59] Li-Ng, M. and Verbalis, J.G. (2010) Conivaptan: Evidence Supporting Its Therapeutic Use in Hyponatremia. Core Evi-dence, 4, 83-92.
https://doi.org/10.2147/ce.s5997
[60] Breshears, J.D., Jiang, B., Rowland, N.C., Kunwar, S. and Blevins, L.S. (2013) Use of Conivaptan for Management of Hyponatremia Following Surgery for Cushing’s Disease. Clinical Neurology and Neurosurgery, 115, 2358-2361.
https://doi.org/10.1016/j.clineuro.2013.08.019
[61] Schnider, P., Bissantz, C., Bruns, A., Dolente, C., Goetschi, E., Jakob-Roetne, R., et al. (2020) Discovery of Balovaptan, a Vasopressin 1a Receptor Antagonist for the Treatment of Autism Spectrum Disorder. Journal of Medicinal Chemistry, 63, 1511-1525.
https://doi.org/10.1021/acs.jmedchem.9b01478
[62] Pena, A., Murat, B., Trueba, M., Ventura, M.A., Bertrand, G., Cheng, L.L., et al. (2007) Pharmacological and Physiological Characterization of D[Leu4, Lys8]Vasopressin, the First V1b-Selective Agonist for Rat Vasopressin/Oxytocin Receptors. Endocrinology, 148, 4136-4146.
https://doi.org/10.1210/en.2006-1633
[63] Corbani, M., Trueba, M., Stoev, S., Murat, B., Mion, J., Boulay, V., et al. (2011) Design, Synthesis, and Pharmacological Characterization of Fluorescent Peptides for Imaging Human V1b Vasopressin or Oxytocin Receptors. Journal of Medicinal Chemistry, 54, 2864-2877.
https://doi.org/10.1021/jm1016208
[64] Gal, C.S., Wagnon, J., Tonnerre, B., Roux, R., Garcia, G., Griebel, G., et al. (2006) An Overview of SSR149415, a Selective Nonpeptide Vasopressin V1b Receptor Antagonist for the Treatment of Stress-Related Disorders. CNS Drug Reviews, 11, 53-68.
https://doi.org/10.1111/j.1527-3458.2005.tb00035.x
[65] Griebel, G., Simiand, J., Serradeil-Le Gal, C., Wagnon, J., Pascal, M., Scatton, B., et al. (2002) Anxiolytic-and Antidepressant-Like Effects of the Non-Peptide Vasopressin V1b Receptor Antagonist, SSR149415, Suggest an Innovative Approach for the Treatment of Stress-Related Disorders. Proceedings of the National Academy of Sciences, 99, 6370-6375.
https://doi.org/10.1073/pnas.092012099
[66] Iijima, M., Yoshimizu, T., Shimazaki, T., Tokugawa, K., Fukumoto, K., Kurosu, S., et al. (2014) Antidepressant and Anxiolytic Profiles of Newly Synthesized Arginine Vasopressin V1b Receptor Antagonists: TASP0233278 and tasp0390325. British Journal of Pharmacology, 171, 3511-3525.
https://doi.org/10.1111/bph.12699
[67] Robben, J.H., Sze, M., Knoers, N.V., Eggert, P., Deen, P. and Mu[Combining Diaeresis]ller, D. (2007) Relief of Nocturnal Enuresis by Desmopressin Is Kidney and Vasopressin Type 2 Receptor Independent. Journal of the American Society of Nephrology, 18, 1534-1539.
https://doi.org/10.1681/asn.2006080907
[68] Hines, C.B., Hooper, G.L. and Collins-Yoder, A. (2020) Tolvaptan for Autosomal Dominant Polycystic Kidney Disease: Pharmacokinetics and Implications for Practice. Nephrology Nursing Journal, 47, 145-150.
https://doi.org/10.37526/1526-744x.2020.47.2.145
[69] Nakamura, S., Hirano, T., Tsujimae, K., Aoyama, M., Kondo, K., Yamamura, Y., et al. (2000) Antidiuretic Effects of a Nonpeptide Vasopressin V2-Receptor Agonist, OPC-51803, Administered Orally to Rats. The Journal of Pharmacology and Experimental Therapeutics, 295, 1005-1011.
https://doi.org/10.1016/s0022-3565(24)39000-7
[70] Tanemoto, M. (2023) Vasopressin V2 Receptor Antagonists for the Syndrome of Inappropriate Antidiuretic Hormone Secretion. International Urology and Nephrology, 56, 361-362.
https://doi.org/10.1007/s11255-023-03643-9
[71] Yamaguchi, K., Shijubo, N., Kodama, T., Mori, K., Sugiura, T., Kuriyama, T., et al. (2010) Clinical Implication of the Antidiuretic Hormone (ADH) Receptor Antagonist Mozavaptan Hydrochloride in Patients with Ectopic ADH Syndrome. Japanese Journal of Clinical Oncology, 41, 148-152.
https://doi.org/10.1093/jjco/hyq170
[72] Wang, X., Constans, M.M., Chebib, F.T., Torres, V.E. and Pellegrini, L. (2019) Effect of a Vasopressin V2 Receptor Antagonist on Polycystic Kidney Disease Development in a Rat Model. American Journal of Nephrology, 49, 487-493.
https://doi.org/10.1159/000500667
[73] Fouillen, A., Bous, J., Couvineau, P., Orcel, H., Mary, C., Pierre, T., Mendre, C., Gilles, N., Schulte, G., Granier, S. and Mouillac, B. (2024) Inactive Structures of the Vasopressin V2 Receptor Reveal Distinct Antagonist Binding Modes for Tolvaptan and Mambaq-Uaretin Toxin.
[74] Kee, T.R., Khan, S.A., Neidhart, M.B., Masters, B.M., Zhao, V.K., Kim, Y.K., et al. (2024) The Multifaceted Functions of β-Arrestins and Their Therapeutic Potential in Neurodegenerative Diseases. Experimental & Molecular Medicine, 56, 129-141.
https://doi.org/10.1038/s12276-023-01144-4
[75] Haider, R.S., Matthees, E.S.F., Drube, J., Reichel, M., Zabel, U., Inoue, A., et al. (2022) β-Arrestin1 and 2 Exhibit Distinct Phosphorylation-Dependent Conformations When Coupling to the Same GPCR in Living Cells. Nature Communications, 13, Article No. 5638.
https://doi.org/10.1038/s41467-022-33307-8
[76] Carino, C.M.C., Hiratsuka, S., Kise, R., Nakamura, G., Kawakami, K., Yanagawa, M., et al. (2025) Signal Profiles and Spatial Regulation of β-Arrestin Recruitment through Gβ5 and GRK3 at the Μ-Opioid Receptor. European Journal of Pharmacology, 987, Article ID: 177151.
https://doi.org/10.1016/j.ejphar.2024.177151

Baidu
map