[1] |
OpenAI (2024) GPT-4 Technical Report. https://arxiv.org/abs/2303.08774 |
[2] |
Yang, A., Yang, B.S., et al. (2024) Qwen2 Technical Report. https://arxiv.org/abs/2407.10671 |
[3] |
Dubey, A., Jauhri, A., et al. (2024) The Llama 3 Herd of Models. https://arxiv.org/abs/2407.21783 |
[4] |
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., et al. (2017) Attention Is All You Need. Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, 4-9 December 2017, 5998-6008. |
[5] |
Huang, L., Yu, W.J., Ma, W.T., Zhong, W.H., Feng, Z.Y., Wang, H.T., et al. (2023) A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions. https://arxiv.org/abs/2311.05232 |
[6] |
Fan, W., Ding, Y., Ning, L., Wang, S., Li, H., Yin, D., et al. (2024) A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Barcelona, 25-29 August 2024, 6491-6501. https://doi.org/10.1145/3637528.3671470 |
[7] |
Gao, Y.F., Xiong, Y., Gao, X.Y., Jia, K.X., Pan, J.L., Bi, Y.X., et al. (2024) Retrieval-Augmented Generation for Large Language Models: A Survey. https://arxiv.org/abs/2312.10997 |
[8] |
Hu, Y.C. and Lu, Y.X. (2024) RAG and RAU: A Survey on Retrieval-Augmented Language Model in Natural Language Processing. https://arxiv.org/abs/2404.19543 |
[9] |
Huang, Y.Z. and Huang, J. (2024) A Survey on Retrieval-Augmented Text Generation for Large Language Models. https://arxiv.org/abs/2404.10981 |
[10] |
Wu, S.Y., Xiong, Y., Cui, Y.F., Wu, H.L., Chen, C., Yuan, Y., et al. (2024) Retrieval-Augmented Generation for Natural Language Processing: A Survey. https://arxiv.org/abs/2407.13193 |
[11] |
Yu, H., Gan, A.R., Zhang, K., Tong, S.W., Liu, Q. and Liu, Z.F. (2024) Evaluation of Retrieval-Augmented Generation: A Survey. https://arxiv.org/abs/2405.07437 |
[12] |
Zhao, P.H., Zhang, H.L., Yu, Q.H., Wang, Z.R., Geng, Y.T., Fu, F.C., et al. (2024) Retrieval-Augmented Generation for AI-Generated Content: A Survey. https://arxiv.org/abs/2402.19473 |
[13] |
Liu, N.F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua, M., Petroni, F., et al. (2024) Lost in the Middle: How Language Models Use Long Contexts. Transactions of the Association for Computational Linguistics, 12, 157-173. https://doi.org/10.1162/tacl_a_00638 |
[14] |
Edge, D., Trinh, H., Cheng, N., et al. (2024) From Local to Global: A Graph RAG Approach to Query-Focused Summarization. https://arxiv.org/abs/2404.16130 |
[15] |
Hu, Y.T., Lei, Z.H., Zhang, Z., Pan, B., Ling, C. and Zhao, L. (2024) GRAG: Graph Retrieval-Augmented Generation. https://arxiv.org/abs/2405.16506 |
[16] |
Mavromatis, C. and Karypis, G. (2024) GNN-RAG: Graph Neural Retrieval for Large Language Model Reasoning. https://arxiv.org/abs/2405.20139 |
[17] |
Guo, J.Y., Du, L., Liu, H.Y., Zhou, M.Y., He, X.Y. and Han, S. (2023) GPT4Graph: Can Large Language Models Understand Graph Structured Data? An Empirical Evaluation and Benchmarking. https://arxiv.org/abs/2305.15066 |
[18] |
Wang, H., Feng, S.B., He, T.X., Tan, Z.X., Han, X.C. and Tsvetkov, Y. (2023) Can Language Models Solve Graph Problems in Natural Language? Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, 10-16 December 2023, 30840-30861. |
[19] |
Chen, H.J. (2024) Large Knowledge Model: Perspectives and Challenges. https://arxiv.org/abs/2312.02706 |
[20] |
Fan, W.Q., Wang, S.J., Huang, J.N., Chen, Z.K., Song, Y., Tang, W.Z., et al. (2024) Graph Machine Learning in the Era of Large Language Models (LLMs). https://arxiv.org/abs/2404.14928 |
[21] |
Jin, B.W., Liu, G., Han, C., Jiang, M., Ji, H. and Han, J.W. (2024) Large Language Models on Graphs: A Comprehensive Survey. https://arxiv.org/abs/2312.02783 |
[22] |
Li, Y.H., Li, Z.X., Wang, P.S., Li, J., Sun, X.G., Cheng, H. and Yu, J.X. (2024) A Survey of Graph Meets Large Language Model: Progress and Future Directions. https://arxiv.org/abs/2311.12399 |
[23] |
Liu, J.W., Yang, C., Lu, Z.Y., Chen, J.Z., Li, Y.B., Zhang, M.M., et al. (2024) Towards Graph Foundation Models: A Survey and Beyond. https://arxiv.org/abs/2310.11829 |
[24] |
Fu, B., Qiu, Y.Q., Tang, C.G., Li, Y., Yu, H.Y. and Sun, J. (2020) A Survey on Complex Question Answering over Knowledge Base: Recent Advances and Challenges. https://arxiv.org/abs/2007.13069 |
[25] |
Lan, Y., He, G., Jiang, J., Jiang, J., Zhao, W.X. and Wen, J. (2021) A Survey on Complex Knowledge Base Question Answering: Methods, Challenges and Solutions. Proceedings of the 30th International Joint Conference on Artificial Intelligence, Montreal, 19-27 August 2021, 4483-4491. https://doi.org/10.24963/ijcai.2021/611 |
[26] |
Lan, Y., He, G., Jiang, J., Jiang, J., Zhao, W.X. and Wen, J. (2023) Complex Knowledge Base Question Answering: A Survey. IEEE Transactions on Knowledge and Data Engineering, 35, 11196-11215. https://doi.org/10.1109/tkde.2022.3223858 |
[27] |
Kipf, T.N. and Welling, M. (2017) Semi-Supervised Classification with Graph Convolutional Networks. 5th International Conference on Learning Representations, ICLR 2017, Toulon, 24-26 April 2017. https://openreview.net/forum?id=SJU4ayYgl |
[28] |
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P. and Bengio, Y. (2018) Graph Attention Networks. https://arxiv.org/abs/1710.10903 |
[29] |
Hamilton, W.L., Ying, Z.T. and Leskovec, J. (2017) Inductive Representation Learning on Large Graphs. Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, 4-9 December 2017, 1024-1034. |
[30] |
Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2019) BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1, 4171-4186. |
[31] |
Liu, Y.H., Ott, M., Goyal, N., et al. (2019) RoBERTa: A Robustly Optimized BERT Pretraining Approach. https://arxiv.org/abs/1907.11692 |
[32] |
Reimers, N. and Gurevych, I. (2019) Sentence-Bert: Sentence Embeddings Using Siamese BERT-Networks. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, 3-7 November 2019, 3980-3990. https://doi.org/10.18653/v1/d19-1410 |
[33] |
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., et al. (2020) Language Models Are Few-Shot Learners. 34th Conference on Neural Information Processing Systems (NeurIPS 2020), 6-12 December 2020, 1877-1901. |
[34] |
Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., et al. (2022) Training Language Models to Follow Instructions with Human Feedback. 36th Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans, 28 November-9 December 2022, 27730-27744. |
[35] |
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R. and Ives, Z. (2007) DBpedia: A Nucleus for a Web of Open Data. 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, 11-15 November 2007, 722-735. https://doi.org/10.1007/978-3-540-76298-0_52 |
[36] |
Bollacker, K., Evans, C., Paritosh, P., Sturge, T. and Taylor, J. (2008) Freebase: A Collaboratively Created Graph Database for Structuring Human Knowledge. Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, 9-12 June 2008, 1247-1250. https://doi.org/10.1145/1376616.1376746 |
[37] |
Liu, H. and Singh, P. (2004) ConceptNet—A Practical Commonsense Reasoning Tool-Kit. BT Technology Journal, 22, 211-226. https://doi.org/10.1023/b:bttj.0000047600.45421.6d |
[38] |
Sap, M., Le Bras, R., Allaway, E., Bhagavatula, C., Lourie, N., Rashkin, H., et al. (2019) ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 3027-3035. https://doi.org/10.1609/aaai.v33i01.33013027 |
[39] |
Suchanek, F.M., Kasneci, G. and Weikum, G. (2007) Yago: A Core of Semantic Knowledge. Proceedings of the 16th International Conference on World Wide Web, Banff, 8-12 May 2007, 697-706. https://doi.org/10.1145/1242572.1242667 |
[40] |
Vrandečić, D. and Krötzsch, M. (2014) Wikidata: A Free Collaborative Knowledgebase. Communications of the ACM, 57, 78-85. https://doi.org/10.1145/2629489 |
[41] |
Morris, C., Kriege, N.M., Bause, F., Kersting, K., Mutzel, P. and Neumann, M. (2020) TU Dataset: A Collection of Benchmark Datasets for Learning with Graphs. ICML 2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), Seattle, July 2022, 1455-1468. |
[42] |
Gutiérrez, B.J., Shu, Y.H., Gu, Y., Yasunaga, M. and Su, Y. (2024) HippoRAG: Neurobiologically Inspired Long-Term Memory for Large Language Models. https://arxiv.org/abs/2405.14831 |
[43] |
Li, D.W., Yang, S., Tan, Z., et al. (2024) DALK: Dynamic Co-Augmentation of LLMs and KG to Answer Alzheimer’s Disease Questions with Scientific Literature. https://arxiv.org/abs/2405.04819 |
[44] |
Wang, Y., Lipka, N., Rossi, R.A., Siu, A., Zhang, R. and Derr, T. (2024) Knowledge Graph Prompting for Multi-Document Question Answering. Proceedings of the AAAI Conference on Artificial Intelligence, 38, 19206-19214. https://doi.org/10.1609/aaai.v38i17.29889 |
[45] |
Xu, Z., Cruz, M.J., Guevara, M., Wang, T., Deshpande, M., Wang, X., et al. (2024) Retrieval-Augmented Generation with Knowledge Graphs for Customer Service Question Answering. Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, Washington DC, 14-18 July 2024, 2905-2909. https://doi.org/10.1145/3626772.3661370 |
[46] |
Wang, R., Li, Z., Zhang, D., Yin, Q., Zhao, T., Yin, B., et al. (2022) RETE: Retrieval-Enhanced Temporal Event Forecasting on Unified Query Product Evolutionary Graph. Proceedings of the ACM Web Conference 2022, Lyon, 25-29 April 2022, 462-472. https://doi.org/10.1145/3485447.3511974 |
[47] |
Jiang, X.K., Zhang, R.Z., Xu, Y.X., Qiu, R.H., Fang, Y., Wang, Z.Y., et al. (2024) HyKGE: A Hypothesis Knowledge Graph Enhanced Framework for Accurate and Reliable Medical LLMs Responses. https://arxiv.org/abs/2312.15883 |
[48] |
Wen, Y., Wang, Z. and Sun, J. (2024) Mindmap: Knowledge Graph Prompting Sparks Graph of Thoughts in Large Language Models. Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics, Volume 1, 10370-10388. https://doi.org/10.18653/v1/2024.acl-long.558 |
[49] |
Yang, R., Liu, H., Marrese-Taylor, E., Zeng, Q., Ke, Y., Li, W., et al. (2024) KG-Rank: Enhancing Large Language Models for Medical QA with Knowledge Graphs and Ranking Techniques. Proceedings of the 23rd Workshop on Biomedical Natural Language Processing, Bangkok, August 2024, 155-166. https://doi.org/10.18653/v1/2024.bionlp-1.13 |
[50] |
Delile, J., Mukherjee, S., Van Pamel, A. and Zhukov, L. (2024) Graph-Based Retriever Captures the Long Tail of Biomedical Knowledge. https://arxiv.org/abs/2402.12352 |
[51] |
Ranade, P. and Joshi, A. (2023) FABULA: Intelligence Report Generation Using Retrieval-Augmented Narrative Construction. Proceedings of the International Conference on Advances in Social Networks Analysis and Mining, Kusadasi, 6-9 November 2023, 603-610. https://doi.org/10.1145/3625007.3627505 |
[52] |
Peng, Z. and Yang, Y. (2024) Connecting the Dots: Inferring Patent Phrase Similarity with Retrieved Phrase Graphs. Findings of the Association for Computational Linguistics: NAACL 2024, Mexico City, June 2024, 1877-1890. https://doi.org/10.18653/v1/2024.findings-naacl.121 |
[53] |
Wu, T., Bai, X., Guo, W., Liu, W., Li, S. and Yang, Y. (2023) Modeling Fine-Grained Information via Knowledge-Aware Hierarchical Graph for Zero-Shot Entity Retrieval. Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, Singapore, 27 February-3 March 2023, 1021-1029. https://doi.org/10.1145/3539597.3570415 |
[54] |
Li, Y.H., Zhang, R. and Liu, J.Y. (2024) An Enhanced Prompt-Based LLM Reasoning Scheme via Knowledge Graph-Integrated Collaboration. https://arxiv.org/abs/2402.04978 |
[55] |
Sun, J.S., Xu, C.J., Tang, L., et al. (2024) Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph. https://arxiv.org/abs/2307.07697 |
[56] |
Sun, L., Tao, Z., Li, Y. and Arakawa, H. (2024) ODA: Observation-Driven Agent for Integrating LLMs and Knowledge Graphs. Findings of the Association for Computational Linguistics ACL 2024, Bangkok, August 2024, 7417-7431. https://doi.org/10.18653/v1/2024.findings-acl.442 |
[57] |
Qi, Z.X., Yu, Y.J., Tu, M.Q., et al. (2023) FoodGPT: A Large Language Model in Food Testing Domain with Incremental Pre-Training and Knowledge Graph Prompt. https://arxiv.org/abs/2308.10173 |
[58] |
Choudhary, N. and Reddy, C.K. (2024) Complex Logical Reasoning over Knowledge Graphs Using Large Language Models. https://arxiv.org/abs/2305.01157 |
[59] |
Pahuja, V., Wang, B., Latapie, H., Srinivasa, J. and Su, Y. (2023) A Retrieve-and-Read Framework for Knowledge Graph Link Prediction. Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, Birmingham, 21-25 October 2023, 1992-2002. https://doi.org/10.1145/3583780.3614769 |
[60] |
Baek, J., Aji, A.F., Lehmann, J. and Hwang, S.J. (2023) Direct Fact Retrieval from Knowledge Graphs without Entity Linking. Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, Volume 1, 10038-10055. https://doi.org/10.18653/v1/2023.acl-long.558 |
[61] |
He, X.X., Tian, Y.J., Sun, Y.F., et al. (2024) G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering. https://arxiv.org/abs/2402.07630 |
[62] |
Jin, B., Xie, C., Zhang, J., Roy, K.K., Zhang, Y., Li, Z., et al. (2024) Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs. Findings of the Association for Computational Linguistics ACL 2024, Bangkok, August 2024, 163-184. https://doi.org/10.18653/v1/2024.findings-acl.11 |
[63] |
Yang, X., Sun, K., Xin, H., Sun, Y.S., Bhalla, N., Chen, X.S., et al. (2024) CRAG-Comprehensive RAG Benchmark. https://arxiv.org/abs/2406.04744 |