[1] |
Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33. https://doi.org/10.3322/caac.21708 |
[2] |
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660 |
[3] |
Kuroki, L. and Guntupalli, S.R. (2020) Treatment of Epithelial Ovarian Cancer. BMJ, 371, m3773. https://doi.org/10.1136/bmj.m3773 |
[4] |
Cortez, A.J., Tudrej, P., Kujawa, K.A. and Lisowska, K.M. (2017) Advances in Ovarian Cancer Therapy. Cancer Chemotherapy and Pharmacology, 81, 17-38. https://doi.org/10.1007/s00280-017-3501-8 |
[5] |
Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042 |
[6] |
Battaglia, A.M., Sacco, A., Perrotta, I.D., Faniello, M.C., Scalise, M., Torella, D., et al. (2022) Iron Administration Overcomes Resistance to Erastin-Mediated Ferroptosis in Ovarian Cancer Cells. Frontiers in Oncology, 12, Article 868351. https://doi.org/10.3389/fonc.2022.868351 |
[7] |
Basuli, D., Tesfay, L., Deng, Z., Paul, B., Yamamoto, Y., Ning, G., et al. (2017) Iron Addiction: A Novel Therapeutic Target in Ovarian Cancer. Oncogene, 36, 4089-4099. https://doi.org/10.1038/onc.2017.11 |
[8] |
Dolma, S., Lessnick, S.L., Hahn, W.C. and Stockwell, B.R. (2003) Identification of Genotype-Selective Antitumor Agents Using Synthetic Lethal Chemical Screening in Engineered Human Tumor Cells. Cancer Cell, 3, 285-296. https://doi.org/10.1016/s1535-6108(03)00050-3 |
[9] |
Yang, W.S. and Stockwell, B.R. (2008) Synthetic Lethal Screening Identifies Compounds Activating Iron-Dependent, Nonapoptotic Cell Death in Oncogenic-RAS-Harboring Cancer Cells. Chemistry & Biology, 15, 234-245. https://doi.org/10.1016/j.chembiol.2008.02.010 |
[10] |
Bersuker, K., Hendricks, J.M., Li, Z., Magtanong, L., Ford, B., Tang, P.H., et al. (2019) The Coq Oxidoreductase FSP1 Acts Parallel to GPX4 to Inhibit Ferroptosis. Nature, 575, 688-692. https://doi.org/10.1038/s41586-019-1705-2 |
[11] |
Tang, D.L., Chen, X., Kang, R. and Kroemer, G. (2020) Ferroptosis: Molecular Mechanisms and Health Implications. Cell Research, 31, 107-125. https://doi.org/10.1038/s41422-020-00441-1 |
[12] |
Rockfield, S., Raffel, J., Mehta, R., Rehman, N. and Nanjundan, M. (2017) Iron Overload and Altered Iron Metabolism in Ovarian Cancer. Biological Chemistry, 398, 995-1007. https://doi.org/10.1515/hsz-2016-0336 |
[13] |
Crielaard, B.J., Lammers, T. and Rivella, S. (2017) Targeting Iron Metabolism in Drug Discovery and Delivery. Nature Reviews Drug Discovery, 16, 400-423. https://doi.org/10.1038/nrd.2016.248 |
[14] |
Trujillo-Alonso, V., Pratt, E.C., Zong, H., Lara-Martinez, A., Kaittanis, C., Rabie, M.O., et al. (2019) Fda-Approved Ferumoxytol Displays Anti-Leukaemia Efficacy against Cells with Low Ferroportin Levels. Nature Nanotechnology, 14, 616-622. https://doi.org/10.1038/s41565-019-0406-1 |
[15] |
Lattuada, D., Uberti, F., Colciaghi, B., Morsanuto, V., Maldi, E., Squarzanti, D.F., et al. (2015) Fimbrial Cells Exposure to Catalytic Iron Mimics Carcinogenic Changes. International Journal of Gynecological Cancer, 25, 389-398. https://doi.org/10.1097/igc.0000000000000379 |
[16] |
Oda, K., Hamanishi, J., Matsuo, K. and Hasegawa, K. (2018) Genomics to Immunotherapy of Ovarian Clear Cell Carcinoma: Unique Opportunities for Management. Gynecologic Oncology, 151, 381-389. https://doi.org/10.1016/j.ygyno.2018.09.001 |
[17] |
Koppula, P., Zhuang, L. and Gan, B. (2020) Cystine Transporter SLC7A11/xCT in Cancer: Ferroptosis, Nutrient Dependency, and Cancer Therapy. Protein & Cell, 12, 599-620. https://doi.org/10.1007/s13238-020-00789-5 |
[18] |
Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., et al. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171, 273-285. https://doi.org/10.1016/j.cell.2017.09.021 |
[19] |
Gaschler, M.M., Andia, A.A., Liu, H., Csuka, J.M., Hurlocker, B., Vaiana, C.A., et al. (2018) FINO2 Initiates Ferroptosis through GPX4 Inactivation and Iron Oxidation. Nature Chemical Biology, 14, 507-515. https://doi.org/10.1038/s41589-018-0031-6 |
[20] |
Seibt, T.M., Proneth, B. and Conrad, M. (2019) Role of GPX4 in Ferroptosis and Its Pharmacological Implication. Free Radical Biology and Medicine, 133, 144-152. https://doi.org/10.1016/j.freeradbiomed.2018.09.014 |
[21] |
Novera, W., Lee, Z., Nin, D.S., Dai, M.Z., Binte Idres, S., Wu, H., et al. (2020) Cysteine Deprivation Targets Ovarian Clear Cell Carcinoma via Oxidative Stress and Iron-Sulfur Cluster Biogenesis Deficit. Antioxidants & Redox Signaling, 33, 1191-1208. https://doi.org/10.1089/ars.2019.7850 |
[22] |
Kanapathipillai, M. (2018) Treating P53 Mutant Aggregation-Associated Cancer. Cancers, 10, Article 154. https://doi.org/10.3390/cancers10060154 |
[23] |
Zhang, Y.H., Feng, X.L., Zhang, J., Chen, M.Y., Huang, E. and Chen, X.B. (2019) Iron Regulatory Protein 2 Is a Suppressor of Mutant P53 in Tumorigenesis. Oncogene, 38, 6256-6269. https://doi.org/10.1038/s41388-019-0876-5 |
[24] |
Kaiser, A.M. and Attardi, L.D. (2017) Deconstructing Networks of P53-Mediated Tumor Suppression in Vivo. Cell Death & Differentiation, 25, 93-103. https://doi.org/10.1038/cdd.2017.171 |
[25] |
Zhang, C.M. and Liu, N. (2022) Ferroptosis, Necroptosis, and Pyroptosis in the Occurrence and Development of Ovarian Cancer. Frontiers in Immunology, 13, Article 920059. https://doi.org/10.3389/fimmu.2022.920059 |
[26] |
Huang, C.L., Yang, M.C., Deng, J., Li, P., Su, W.J. and Jiang, R. (2018) Upregulation and Activation of P53 by Erastin-Induced Reactive Oxygen Species Contribute to Cytotoxic and Cytostatic Effects in A549 Lung Cancer Cells. Oncology Reports, 40, 2363-2370. https://doi.org/10.3892/or.2018.6585 |
[27] |
Hong, T., Lei, G., Chen, X., Li, H., Zhang, X.Y., Wu, N.Y., et al. (2021) PARP Inhibition Promotes Ferroptosis via Repressing SLC7A11 and Synergizes with Ferroptosis Inducers in BRCA-Proficient Ovarian Cancer. Redox Biology, 42, Article ID: 101928. https://doi.org/10.1016/j.redox.2021.101928 |
[28] |
Wu, X.D., Shen, S.Z., Qin, J.L., Fei, W.D., Fan, F.Y., Gu, J.X., et al. (2022) High Co‐Expression of Slc7a11 and GPX4 as a Predictor of Platinum Resistance and Poor Prognosis in Patients with Epithelial Ovarian Cancer. BJOG: An International Journal of Obstetrics & Gynaecology, 129, 40-49. https://doi.org/10.1111/1471-0528.17327 |
[29] |
Sui, X.B., Zhang, R.N., Liu, S.P., Duan, T., Zhai, L.J., Zhang, M.M., et al. (2018) RSL3 Drives Ferroptosis through GPX4 Inactivation and ROS Production in Colorectal Cancer. Frontiers in Pharmacology, 9, Article 1371. https://doi.org/10.3389/fphar.2018.01371 |
[30] |
Wei, Y.P., Lv, H.H., Shaikh, A.B., Han, W., Hou, H.J., Zhang, Z.H., et al. (2020) Directly Targeting Glutathione Peroxidase 4 May Be More Effective than Disrupting Glutathione on Ferroptosis-Based Cancer Therapy. Biochimica et Biophysica Acta (BBA)-General Subjects, 1864, Article ID: 129539. https://doi.org/10.1016/j.bbagen.2020.129539 |
[31] |
Li, D.X., Zhang, M.L. and Chao, H.T. (2021) Significance of Glutathione Peroxidase 4 and Intracellular Iron Level in Ovarian Cancer Cells—“Utilization” of Ferroptosis Mechanism. Inflammation Research, 70, 1177-1189. https://doi.org/10.1007/s00011-021-01495-6 |
[32] |
Xie, Y., Hou, W., Song, X., Yu, Y., Huang, J., Sun, X., et al. (2016) Ferroptosis: Process and Function. Cell Death & Differentiation, 23, 369-379. https://doi.org/10.1038/cdd.2015.158 |
[33] |
Nunes, S.C., Ramos, C., Lopes-Coelho, F., Sequeira, C.O., Silva, F., Gouveia-Fernandes, S., et al. (2018) Cysteine Allows Ovarian Cancer Cells to Adapt to Hypoxia and to Escape from Carboplatin Cytotoxicity. Scientific Reports, 8, Article No. 9513. https://doi.org/10.1038/s41598-018-27753-y |
[34] |
Sbodio, J.I., Snyder, S.H. and Paul, B.D. (2018) Regulators of the Transsulfuration Pathway. British Journal of Pharmacology, 176, 583-593. https://doi.org/10.1111/bph.14446 |
[35] |
Liu, N., Lin, X.L. and Huang, C.Y. (2019) Activation of the Reverse Transsulfuration Pathway through NRF2/CBS Confers Erastin-Induced Ferroptosis Resistance. British Journal of Cancer, 122, 279-292. https://doi.org/10.1038/s41416-019-0660-x |
[36] |
Liu, J., Kang, R. and Tang, D. (2021) Signaling Pathways and Defense Mechanisms of Ferroptosis. The FEBS Journal, 289, 7038-7050. https://doi.org/10.1111/febs.16059 |
[37] |
赵田禾, 李欣洋, 孙东雷, 等. 铁离子与铁死亡:衰老研究领域的新大陆[J]. 现代预防医学, 2018, 45(23): 4392-4395. |
[38] |
Yan, H.-F., Zou, T., Tuo, Q.-Z., Xu, S., Li, H., Belaidi, A.A., et al. (2021) Ferroptosis: Mechanisms and Links with Diseases. Signal Transduction and Targeted Therapy, 6, Article No. 49. https://doi.org/10.1038/s41392-020-00428-9 |
[39] |
Chu, B., Kon, N., Chen, D.L., Li, T.Y., Liu, T., Jiang, L., et al. (2019) ALOX12 Is Required for P53-Mediated Tumour Suppression through a Distinct Ferroptosis Pathway. Nature Cell Biology, 21, 579-591. https://doi.org/10.1038/s41556-019-0305-6 |
[40] |
Ou, Y., Wang, S.-J., Li, D.Ww., Chu, B. and Gu, W. (2016) Activation of SAT1 Engages Polyamine Metabolism with P53-Mediated Ferroptotic Responses. Proceedings of the National Academy of Sciences, 113, E6806-E6812. https://doi.org/10.1073/pnas.1607152113 |
[41] |
Yang, W.S., SriRamaratnam, R., Welsch, M.E., Shimada, K., Skouta, R., Viswanathan, V.S., et al. (2014) Regulation of Ferroptotic Cancer Cell Death by Gpx4. Cell, 156, 317-331. https://doi.org/10.1016/j.cell.2013.12.010 |
[42] |
Shimada, K., Skouta, R., Kaplan, A., Yang, W.S., Hayano, M., Dixon, S.J., et al. (2016) Global Survey of Cell Death Mechanisms Reveals Metabolic Regulation of Ferroptosis. Nature Chemical Biology, 12, 497-503. https://doi.org/10.1038/nchembio.2079 |
[43] |
Cao, Y., Li, Y., He, C., Yan, F., Li, J.-R., Xu, H.-Z., et al. (2021) Selective Ferroptosis Inhibitor Liproxstatin-1 Attenuates Neurological Deficits and Neuroinflammation after Subarachnoid Hemorrhage. Neuroscience Bulletin, 37, 535-549. https://doi.org/10.1007/s12264-020-00620-5 |
[44] |
Mei, H.L., Zhao, L.P., Li, W., Zheng, Z.W., Tang, D.M., Lu, X.L., et al. (2020) Inhibition of Ferroptosis Protects House Ear Institute‐organ of Corti 1 Cells and Cochlear Hair Cells from Cisplatin‐Induced Ototoxicity. Journal of Cellular and Molecular Medicine, 24, 12065-12081. https://doi.org/10.1111/jcmm.15839 |
[45] |
Ye, L.F., Chaudhary, K.R., Zandkarimi, F., Harken, A.D., Kinslow, C.J., Upadhyayula, P.S., et al. (2020) Radiation-Induced Lipid Peroxidation Triggers Ferroptosis and Synergizes with Ferroptosis Inducers. ACS Chemical Biology, 15, 469-484. https://doi.org/10.1021/acschembio.9b00939 |
[46] |
Liang, C., Zhang, X.L., Yang, M.S. and Dong, X.C. (2019) Recent Progress in Ferroptosis Inducers for Cancer Therapy. Advanced Materials, 31, Article 1904197. https://doi.org/10.1002/adma.201904197 |
[47] |
Li, J.B., Liu, J.A., Zhou, Z.A., Wu, R.L., Chen, X., Yu, C.H., et al. (2023) Tumor-Specific GPX4 Degradation Enhances Ferroptosis-Initiated Antitumor Immune Response in Mouse Models of Pancreatic Cancer. Science Translational Medicine, 15, eadg3049. https://doi.org/10.1126/scitranslmed.adg3049 |
[48] |
Hassannia, B., Vandenabeele, P. and Vanden Berghe, T. (2019) Targeting Ferroptosis to Iron Out Cancer. Cancer Cell, 35, 830-849. https://doi.org/10.1016/j.ccell.2019.04.002 |
[49] |
Gao, M., Deng, J., Liu, F., Fan, A., Wang, Y., Wu, H., et al. (2019) Triggered Ferroptotic Polymer Micelles for Reversing Multidrug Resistance to Chemotherapy. Biomaterials, 223, Article ID: 119486. https://doi.org/10.1016/j.biomaterials.2019.119486 |
[50] |
Efferth, T. (2017) From Ancient Herb to Modern Drug: Artemisia Annua and Artemisinin for Cancer Therapy. Seminars in Cancer Biology, 46, 65-83. https://doi.org/10.1016/j.semcancer.2017.02.009 |
[51] |
Sun, Y.H., Xue, Z.X., Huang, T., Che, X.Y. and Wu, G.Z. (2022) Lipid Metabolism in Ferroptosis and Ferroptosis-Based Cancer Therapy. Frontiers in Oncology, 12, Article 941618. https://doi.org/10.3389/fonc.2022.941618 |
[52] |
Chen, X., Yu, C.H., Kang, R. and Tang, D.L. (2020) Iron Metabolism in Ferroptosis. Frontiers in Cell and Developmental Biology, 8, Article 590226. https://doi.org/10.3389/fcell.2020.590226 |
[53] |
Zhou, Q., Yang, L., Li, T., Wang, K., Huang, X., Shi, J., et al. (2022) Mechanisms and Inhibitors of Ferroptosis in Psoriasis. Frontiers in Molecular Biosciences, 9, Article 1019447. https://doi.org/10.3389/fmolb.2022.1019447 |
[54] |
Miotto, G., Rossetto, M., Di Paolo, M.L., Orian, L., Venerando, R., Roveri, A., et al. (2020) Insight into the Mechanism of Ferroptosis Inhibition by Ferrostatin-1. Redox Biology, 28, Article ID: 101328. https://doi.org/10.1016/j.redox.2019.101328 |
[55] |
Zilka, O., Shah, R., Li, B., Friedmann Angeli, J.P., Griesser, M., Conrad, M., et al. (2017) On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death. ACS Central Science, 3, 232-243. https://doi.org/10.1021/acscentsci.7b00028 |
[56] |
Li, Q., Li, Q.-Q., Jia, J.-N., Sun, Q.-Y., Zhou, H.-H., Jin, W.-L., et al. (2019) Baicalein Exerts Neuroprotective Effects in Fecl3-Induced Posttraumatic Epileptic Seizures via Suppressing Ferroptosis. Frontiers in Pharmacology, 10, Article 638. https://doi.org/10.3389/fphar.2019.00638 |
[57] |
Du, Y. and Guo, Z. (2022) Recent Progress in Ferroptosis: Inducers and Inhibitors. Cell Death Discovery, 8, Article No. 501. https://doi.org/10.1038/s41420-022-01297-7 |
[58] |
Sun, J.C., Wei, Q., Zhou, Y.B., Wang, J.Q., Liu, Q. and Xu, H. (2017) A Systematic Analysis of FDA-Approved Anticancer Drugs. BMC Systems Biology, 11, Article No. 87. https://doi.org/10.1186/s12918-017-0464-7 |
[59] |
Chekerov, R., Hilpert, F., Mahner, S., El-Balat, A., Harter, P., De Gregorio, N., et al. (2018) Sorafenib Plus Topotecan versus Placebo Plus Topotecan for Platinum-Resistant Ovarian Cancer (TRIAS): A Multicentre, Randomised, Double-Blind, Placebo-Controlled, Phase 2 Trial. The Lancet Oncology, 19, 1247-1258. https://doi.org/10.1016/s1470-2045(18)30372-3 |
[60] |
Greenshields, A.L., Shepherd, T.G. and Hoskin, D.W. (2016) Contribution of Reactive Oxygen Species to Ovarian Cancer Cell Growth Arrest and Killing by the Anti-Malarial Drug Artesunate. Molecular Carcinogenesis, 56, 75-93. https://doi.org/10.1002/mc.22474 |
[61] |
Zhang, Y., Xia, M., Zhou, Z.Z., Hu, X., Wang, J., Zhang, M., et al. (2021) P53 Promoted Ferroptosis in Ovarian Cancer Cells Treated with Human Serum Incubated-Superparamagnetic Iron Oxides. International Journal of Nanomedicine, 16, 283-296. https://doi.org/10.2147/ijn.s282489 |
[62] |
Kato, I., Kasukabe, T. and Kumakura, S. (2020) Menin-MLL Inhibitors Induce Ferroptosis and Enhance the Anti-Proliferative Activity of Auranofin in Several Types of Cancer Cells. International Journal of Oncology, 57, 1057-1071. https://doi.org/10.3892/ijo.2020.5116 |
[63] |
Jing, T.T., Guo, Y.L. and Wei, Y.Q. (2022) Carboxymethylated Pachyman Induces Ferroptosis in Ovarian Cancer by Suppressing NRF1/HO1 Signaling. Oncology Letters, 23, Article No. 161. https://doi.org/10.3892/ol.2022.13281 |
[64] |
李勇, 廖莎. 铁死亡相关基因的卵巢癌患者生存预测模型[J]. 中国生育健康杂志, 2023, 34(1): 83-89. |
[65] |
Chen, Y., Liao, X.M., Jing, P., Hu, L.K., Yang, Z.Q., Yao, Y.C., et al. (2022) Linoleic Acid-Glucosamine Hybrid for Endogenous Iron-Activated Ferroptosis Therapy in High-Grade Serous Ovarian Cancer. Molecular Pharmaceutics, 19, 3187-3198. https://doi.org/10.1021/acs.molpharmaceut.2c00333 |
[66] |
van Zyl, B., Tang, D. and Bowden, N.A. (2018) Biomarkers of Platinum Resistance in Ovarian Cancer: What Can We Use to Improve Treatment. Endocrine-Related Cancer, 25, R303-R318. https://doi.org/10.1530/erc-17-0336 |
[67] |
Wang, Y.N., Zhao, G.Y., Condello, S., Huang, H., Cardenas, H., Tanner, E.J., et al. (2021) Frizzled-7 Identifies Platinum-Tolerant Ovarian Cancer Cells Susceptible to Ferroptosis. Cancer Research, 81, 384-399. https://doi.org/10.1158/0008-5472.can-20-1488 |
[68] |
Chan, D.W., Yung, M.M., Chan, Y., Xuan, Y., Yang, H., Xu, D., et al. (2020) MAP30 Protein from Momordica Charantia Is Therapeutic and Has Synergic Activity with Cisplatin against Ovarian Cancer in Vivo by Altering Metabolism and Inducing Ferroptosis. Pharmacological Research, 161, Article ID: 105157. https://doi.org/10.1016/j.phrs.2020.105157 |
[69] |
Cheng, Q., Bao, L.J., Li, M.Q., Chang, K.K. and Yi, X.F. (2021) Erastin Synergizes with Cisplatin via Ferroptosis to Inhibit Ovarian Cancer Growth in Vitro and in Vivo. Journal of Obstetrics and Gynaecology Research, 47, 2481-2491. https://doi.org/10.1111/jog.14779 |
[70] |
Rumford, M., Lythgoe, M., McNeish, I., Gabra, H., Tookman, L., Rahman, N., et al. (2020) Oncologist-Led BRCA ‘Mainstreaming’ in the Ovarian Cancer Clinic: A Study of 255 Patients and Its Impact on Their Management. Scientific Reports, 10, Article No. 3390. https://doi.org/10.1038/s41598-020-60149-5 |
[71] |
Chao, A., Chang, T.-C., Lapke, N., Jung, S.-M., Chi, P., Chen, C.-H., et al. (2016) Prevalence and Clinical Significance of BRCA1/2 Germline and Somatic Mutations in Taiwanese Patients with Ovarian Cancer. Oncotarget, 7, 85529-85541. https://doi.org/10.18632/oncotarget.13456 |