[1] |
杨慧青. 如何预防和护理阿尔茨海默病[J]. 科学之友, 2024(12): 66-67. |
[2] |
Jia, L., Du, Y., Chu, L., Zhang, Z., Li, F., Lyu, D., et al. (2020) Prevalence, Risk Factors, and Management of Dementia and Mild Cognitive Impairment in Adults Aged 60 Years or Older in China: A Cross-Sectional Study. The Lancet Public Health, 5, e661-e671. https://doi.org/10.1016/s2468-2667(20)30185-7 |
[3] |
Jia, J., Wei, C., Chen, S., Li, F., Tang, Y., Qin, W., et al. (2018) The Cost of Alzheimer’s Disease in China and Re‐estimation of Costs Worldwide. Alzheimer’s & Dementia, 14, 483-491. https://doi.org/10.1016/j.jalz.2017.12.006 |
[4] |
康馨谣, 许梅花, 董海静. 阿尔茨海默病发病机制的研究进展[J]. 中国老年学杂志, 2024, 44(22): 5625-5628. |
[5] |
Goedert, M., Eisenberg, D.S. and Crowther, R.A. (2017) Propagation of Tau Aggregates and Neurodegeneration. Annual Review of Neuroscience, 40, 189-210. https://doi.org/10.1146/annurev-neuro-072116-031153 |
[6] |
Wang, Y. and Mandelkow, E. (2015) Tau in Physiology and Pathology. Nature Reviews Neuroscience, 17, 22-35. https://doi.org/10.1038/nrn.2015.1 |
[7] |
Yang, J., Zhi, W. and Wang, L. (2024) Role of Tau Protein in Neurodegenerative Diseases and Development of Its Targeted Drugs: A Literature Review. Molecules, 29, Article 2812. https://doi.org/10.3390/molecules29122812 |
[8] |
Zhu, L. and Qian, Z. (2022) Recent Studies of Atomic‐Resolution Structures of Tau Protein and Structure‐Based Inhibitors. Quantitative Biology, 10, 17-34. https://doi.org/10.15302/j-qb-021-0271 |
[9] |
Neve, R.L., Harris, P., Kosik, K.S., Kurnit, D.M. and Donlon, T.A. (1986) Identification of cDNA Clones for the Human Microtubule-Associated Protein Tau and Chromosomal Localization of the Genes for Tau and Microtubule-Associated Protein 2. Molecular Brain Research, 1, 271-280. https://doi.org/10.1016/0169-328x(86)90033-1 |
[10] |
Kumar, M., Quittot, N., Dujardin, S., Schlaffner, C.N., Viode, A., Wiedmer, A., et al. (2024) Alzheimer Proteopathic Tau Seeds Are Biochemically a Forme fruste of Mature Paired Helical Filaments. Brain, 147, 637-648. https://doi.org/10.1093/brain/awad378 |
[11] |
Jones, S.L. and Svitkina, T.M. (2016) Axon Initial Segment Cytoskeleton: Architecture, Development, and Role in Neuron Polarity. Neural Plasticity, 2016, Article ID: 6808293. https://doi.org/10.1155/2016/6808293 |
[12] |
Di Lorenzo, D. (2024) Tau Protein and Tauopathies: Exploring Tau Protein-Protein and Microtubule Interactions, Cross‐interactions and Therapeutic Strategies. ChemMedChem, 19, e202400180. https://doi.org/10.1002/cmdc.202400180 |
[13] |
Chai, Y., Li, D., Gong, W., Ke, J., Tian, D., Chen, Z., et al. (2024) A Plant Flavonol and Genetic Suppressors Rescue a Pathogenic Mutation Associated with Kinesin in Neurons. Proceedings of the National Academy of Sciences of the United States of America, 121, e2311936121. https://doi.org/10.1073/pnas.2311936121 |
[14] |
Luo, G., Chen, L., Jacutin-Porte, S., Han, Y., Burton, C.R., Xiao, H., et al. (2023) Structure-Activity Relationship (SAR) Studies on Substituted N-(Pyridin-3-Yl)-2-Amino-Isonicotinamides as Highly Potent and Selective Glycogen Synthase Kinase-3 (GSK-3) Inhibitors. Bioorganic & Medicinal Chemistry Letters, 81, Article ID: 129143. https://doi.org/10.1016/j.bmcl.2023.129143 |
[15] |
Tanaka, T., Ohashi, S., Takashima, A. and Kobayashi, S. (2022) Dendritic Distribution of CDK5 mRNA and P35 MRNA, and a Glutamate-Responsive Increase of CDK5/p25 Complex Contribute to Tau Hyperphosphorylation. Biochimica et Biophysica Acta (BBA)—General Subjects, 1866, Article ID: 130135. https://doi.org/10.1016/j.bbagen.2022.130135 |
[16] |
He, Y., Wang, Y., Li, X., Qi, Y., Qu, Z. and Hu, Y. (2024) Lycium Barbarum Polysaccharides Improves Cognitive Functions in ICV-STZ-Induced Alzheimer’s Disease Mice Model by Improving the Synaptic Structural Plasticity and Regulating IRS1/PI3K/AKT Signaling Pathway. NeuroMolecular Medicine, 26, Article No. 15. https://doi.org/10.1007/s12017-024-08784-3 |
[17] |
Meur, S. and Karati, D. (2024) Fyn Kinase in Alzheimer’s Disease: Unraveling Molecular Mechanisms and Therapeutic Implications. Molecular Neurobiology, 62, 643-660. https://doi.org/10.1007/s12035-024-04286-2 |
[18] |
Shen, Z., Sun, D., Savastano, A., Varga, S.J., Cima-Omori, M., Becker, S., et al. (2023) Multivalent Tau/PSD-95 Interactions Arrest in Vitro Condensates and Clusters Mimicking the Postsynaptic Density. Nature Communications, 14, Article No. 6839. https://doi.org/10.1038/s41467-023-42295-2 |
[19] |
Kyalu Ngoie Zola, N., Balty, C., Pyr dit Ruys, S., Vanparys, A.A.T., Huyghe, N.D.G., Herinckx, G., et al. (2023) Specific Post-Translational Modifications of Soluble Tau Protein Distinguishes Alzheimer’s Disease and Primary Tauopathies. Nature Communications, 14, Article No. 3706. https://doi.org/10.1038/s41467-023-39328-1 |
[20] |
Ye, H., Han, Y., Li, P., Su, Z. and Huang, Y. (2022) The Role of Post-Translational Modifications on the Structure and Function of Tau Protein. Journal of Molecular Neuroscience, 72, 1557-1571. https://doi.org/10.1007/s12031-022-02002-0 |
[21] |
黄颖, 李雪, 高伟, 等. 泛素连接酶和去泛素化酶在阿尔茨海默病中的研究进展[J]. 生命科学, 2024, 36(5): 629-636. |
[22] |
Chen, Y. and Yu, Y. (2023) Tau and Neuroinflammation in Alzheimer’s Disease: Interplay Mechanisms and Clinical Translation. Journal of Neuroinflammation, 20, Article No. 165. https://doi.org/10.1186/s12974-023-02853-3 |
[23] |
Islam, T., Hill, E., Abrahamson, E.E., Servaes, S., Smirnov, D.S., Zeng, X., Sehrawat, A., et al. (2025). Phospho-Tau Serine-262 and Serine-356 as Biomarkers of Pre-Tangle Soluble Tau Assemblies in Alzheimer’s Disease. Nature Medicine, 31, 574-588. |
[24] |
Merino-Serrais, P., Soria, J.M., Arrabal, C.A., Ortigado-López, A., Esparza, M.Á.G., Muñoz, A., et al. (2025) Protein Tau Phosphorylation in the Proline Rich Region and Its Implication in the Progression of Alzheimer’s Disease. Experimental Neurology, 383, Article ID: 115049. https://doi.org/10.1016/j.expneurol.2024.115049 |
[25] |
Maitra, S. and Vincent, B. (2022) Cdk5-p25 as a Key Element Linking Amyloid and Tau Pathologies in Alzheimer’s Disease: Mechanisms and Possible Therapeutic Interventions. Life Sciences, 308, Article ID: 120986. https://doi.org/10.1016/j.lfs.2022.120986 |
[26] |
Kim, J., Tadros, B., Liang, Y.H., Kim, Y., Lasagna-Reeves, C., Sonn, J.Y., et al. (2024) TYK2 Regulates Tau Levels, Phosphorylation and Aggregation in a Tauopathy Mouse Model. Nature Neuroscience, 27, 2417-2429. https://doi.org/10.1038/s41593-024-01777-2 |
[27] |
Wojdała, A.L., Bellomo, G., Gaetani, L., Teunissen, C.E., Parnetti, L. and Chiasserini, D. (2025) Immunoassay Detection of Multiphosphorylated Tau Proteoforms as Cerebrospinal Fluid and Plasma Alzheimer’s Disease Biomarkers. Nature Communications, 16, Article No. 214. https://doi.org/10.1038/s41467-024-54878-8 |
[28] |
Huang, Y., Wen, J., Ramirez, L., Gümüşdil, E., Pokhrel, P., Man, V.H., et al. (2023) Methylene Blue Accelerates Liquid-To-Gel Transition of Tau Condensates Impacting Tau Function and Pathology. Nature Communications, 14, Article No. 5444. https://doi.org/10.1038/s41467-023-41241-6 |
[29] |
王宗宝, 李森. Tau蛋白的传播扩散与相关免疫反应的研究进展[J]. 北京师范大学学报(自然科学版), 2023, 59(4): 542-547. |
[30] |
Dickson, J.R., Kruse, C., Montagna, D.R., Finsen, B. and Wolfe, M.S. (2013) Alternative Polyadenylation and MIR‐34 Family Members Regulate Tau Expression. Journal of Neurochemistry, 127, 739-749. https://doi.org/10.1111/jnc.12437 |
[31] |
Kang, S.S., Meng, L., Zhang, X., Wu, Z., Mancieri, A., Xie, B., et al. (2022) Tau Modification by the Norepinephrine Metabolite DOPEGAL Stimulates Its Pathology and Propagation. Nature Structural & Molecular Biology, 29, 292-305. https://doi.org/10.1038/s41594-022-00745-3 |
[32] |
Fowler, S.L., Behr, T.S., Turkes, E., O’Brien, D.P., Cauhy, P.M., Rawlinson, I., et al. (2024) Tau Filaments Are Tethered within Brain Extracellular Vesicles in Alzheimer’s Disease. Nature Neuroscience, 28, 40-48. https://doi.org/10.1038/s41593-024-01801-5 |
[33] |
Chu, D., Yang, X., Wang, J., Zhou, Y., Gu, J., Miao, J., et al. (2023) Tau Truncation in the Pathogenesis of Alzheimer’s Disease: A Narrative Review. Neural Regeneration Research, 19, 1221-1232. https://doi.org/10.4103/1673-5374.385853 |
[34] |
Ayers, J.I., Giasson, B.I. and Borchelt, D.R. (2018) Prion-like Spreading in Tauopathies. Biological Psychiatry, 83, 337-346. https://doi.org/10.1016/j.biopsych.2017.04.003 |
[35] |
Leyns, C.E.G. and Holtzman, D.M. (2017) Glial Contributions to Neurodegeneration in Tauopathies. Molecular Neurodegeneration, 12, Article No. 50. https://doi.org/10.1186/s13024-017-0192-x |
[36] |
郭笑迪, 张国新, 彭琴玉, 等. Tau蛋白聚集体促进小胶质细胞活化的机制研究[J]. 卒中与神经疾病, 2023, 30(5): 429-432, 439. |
[37] |
Nguyen, A.T., Wang, K., Hu, G., Wang, X., Miao, Z., Azevedo, J.A., et al. (2020) APOE and TREM2 Regulate Amyloid-Responsive Microglia in Alzheimer’s Disease. Acta Neuropathologica, 140, 477-493. https://doi.org/10.1007/s00401-020-02200-3 |
[38] |
McQuade, A., Kang, Y.J., Hasselmann, J., Jairaman, A., Sotelo, A., Coburn, M., et al. (2020) Gene Expression and Functional Deficits Underlie TREM2-Knockout Microglia Responses in Human Models of Alzheimer’s Disease. Nature Communications, 11, Article No. 5370. https://doi.org/10.1038/s41467-020-19227-5 |
[39] |
Lee, C.Y.D., Daggett, A., Gu, X., Jiang, L., Langfelder, P., Li, X., et al. (2018) Elevated TREM2 Gene Dosage Reprograms Microglia Responsivity and Ameliorates Pathological Phenotypes in Alzheimer’s Disease Models. Neuron, 97, 1032-1048.e5. https://doi.org/10.1016/j.neuron.2018.02.002 |
[40] |
Gratuze, M., Chen, Y., Parhizkar, S., Jain, N., Strickland, M.R., Serrano, J.R., et al. (2021) Activated Microglia Mitigate Aβ-Associated Tau Seeding and Spreading. Journal of Experimental Medicine, 218, e20210542. https://doi.org/10.1084/jem.20210542 |
[41] |
Gratuze, M., Leyns, C.E.G., Sauerbeck, A.D., St-Pierre, M., Xiong, M., Kim, N., et al. (2020) Impact of TREM2R47H Variant on Tau Pathology-Induced Gliosis and Neurodegeneration. Journal of Clinical Investigation, 130, 4954-4968. https://doi.org/10.1172/jci138179 |
[42] |
Pascoal, T.A., Benedet, A.L., Ashton, N.J., Kang, M.S., Therriault, J., Chamoun, M., et al. (2021) Microglial Activation and Tau Propagate Jointly across Braak Stages. Nature Medicine, 27, 1592-1599. https://doi.org/10.1038/s41591-021-01456-w |
[43] |
Udeochu, J.C., Amin, S., Huang, Y., Fan, L., Torres, E.R.S., Carling, G.K., et al. (2023) Tau Activation of Microglial cGAS-IFN Reduces MEF2C-Mediated Cognitive Resilience. Nature Neuroscience, 26, 737-750. https://doi.org/10.1038/s41593-023-01315-6 |
[44] |
Busche, M.A. and Hyman, B.T. (2020) Synergy between Amyloid-Β and Tau in Alzheimer’s Disease. Nature Neuroscience, 23, 1183-1193. https://doi.org/10.1038/s41593-020-0687-6 |
[45] |
Roemer-Cassiano, S.N., Wagner, F., Evangelista, L., Rauchmann, B., Dehsarvi, A., Steward, A., et al. (2025) Amyloid-associated Hyperconnectivity Drives Tau Spread across Connected Brain Regions in Alzheimer’s Disease. Science Translational Medicine, 17, eadp2564. https://doi.org/10.1126/scitranslmed.adp2564 |
[46] |
Gallego-Rudolf, J., Wiesman, A.I., Pichet Binette, A., Villeneuve, S. and Baillet, S. (2024) Synergistic Association of Aβ and Tau Pathology with Cortical Neurophysiology and Cognitive Decline in Asymptomatic Older Adults. Nature Neuroscience, 27, 2130-2137. https://doi.org/10.1038/s41593-024-01763-8 |
[47] |
Capilla-López, M.D., Deprada, A., Andrade-Talavera, Y., Martínez-Gallego, I., Coatl-Cuaya, H., Sotillo, P., et al. (2025) Synaptic Vulnerability to Amyloid-β and Tau Pathologies Differentially Disrupts Emotional and Memory Neural Circuits. Molecular Psychiatry. |
[48] |
Johnson & Johnson (2025) Johnson & Johnson’s Posdinemab and Tau Active Immunotherapy Receives US FDA Fast Track Designation for the Treatment of Alzheimer’s Disease. https://www.prnewswire.com/news-releases/johnson--johnsons-posdinemab-and-tau-active-immunotherapy-receive-us-fda-fast-track-designations-for-the-treatment-of-alzheimers-disease-302345029.html |
[49] |
Guo, Y., Cai, C., Zhang, B., Tan, B., Tang, Q., Lei, Z., et al. (2024) Targeting USP11 Regulation by a Novel Lithium-Organic Coordination Compound Improves Neuropathologies and Cognitive Functions in Alzheimer Transgenic Mice. EMBO Molecular Medicine, 16, 2856-2881. https://doi.org/10.1038/s44321-024-00146-7 |
[50] |
Benn, J., Cheng, S., Keeling, S., Smith, A.E., Vaysburd, M.J., Böken, D., et al. (2024) Aggregate-Selective Removal of Pathological Tau by Clustering-Activated Degraders. Science, 385, 1009-1016. https://doi.org/10.1126/science.adp5186 |
[51] |
Miller, L.V.C., Papa, G., Vaysburd, M., Cheng, S., Sweeney, P.W., Smith, A., et al. (2024) Co-Opting Templated Aggregation to Degrade Pathogenic Tau Assemblies and Improve Motor Function. Cell, 187, 5967-5980.e17. https://doi.org/10.1016/j.cell.2024.08.024 |
[52] |
Hu, Z., Yang, J., Zhang, S., Li, M., Zuo, C., Mao, C., et al. (2024) AAV Mediated Carboxyl Terminus of Hsp70 Interacting Protein Overexpression Mitigates the Cognitive and Pathological Phenotypes of APP/PS1 Mice. Neural Regeneration Research, 20, 253-264. https://doi.org/10.4103/nrr.nrr-d-23-01277 |
[53] |
Jia, N., Ganesan, D., Guan, H., Jeong, Y.Y., Han, S., Rajapaksha, G., et al. (2024) Mitochondrial Bioenergetics Stimulates Autophagy for Pathological MAPT/tau Clearance in Tauopathy Neurons. Autophagy, 21, 54-79. https://doi.org/10.1080/15548627.2024.2392408 |
[54] |
Vrechi, T.A.M., Guarache, G.C., Oliveira, R.B., Guedes, E.D.C., Erustes, A.G., Leão, A.H.F.F., et al. (2025) Cannabidiol-Induced Autophagy Ameliorates Tau Protein Clearance. Neurotoxicity Research, 43, Article No. 8. https://doi.org/10.1007/s12640-025-00729-3 |
[55] |
Huang, K., Hsiao, I., Huang, C., Huang, C., Chang, H., Huang, S., et al. (2025) The Taiwan‐ADNI Workflow toward Integrating Plasma P‐tau217 into Prediction Models for the Risk of Alzheimer’s Disease and Tau Burden. Alzheimer’s & Dementia, 21, e14297. https://doi.org/10.1002/alz.14297 |
[56] |
Warmenhoven, N., Salvadó, G., Janelidze, S., Mattsson-Carlgren, N., Bali, D., Orduña Dolado, A., et al. (2024) A Comprehensive Head-To-Head Comparison of Key Plasma Phosphorylated Tau 217 Biomarker Tests. Brain, 148, 416-431. https://doi.org/10.1093/brain/awae346 |
[57] |
林璐, 马辛, 王刚, 等. 中国阿尔茨海默病早期预防指南(2024) [J]. 阿尔茨海默病及相关病杂志, 2024, 7(3): 168-175. |