[1] |
de Sire, A., de Sire, R., Curci, C., Castiglione, F. and Wahli, W. (2022) Role of Dietary Supplements and Probiotics in Modulating Microbiota and Bone Health: The Gut-Bone Axis. Cells, 11, Article 743. https://doi.org/10.3390/cells11040743 |
[2] |
Regev, G.J., Leor, G., Ankori, R., Hochberg, U., Ofir, D., Khashan, M., et al. (2021) Long-Term Pain Characteristics and Management Following Minimally Invasive Spinal Decompression and Open Laminectomy and Fusion for Spinal Stenosis. Medicina (Kaunas). Medicina, 57, Article 1125. https://doi.org/10.3390/medicina57101125 |
[3] |
Chen, P., Xu, T., Zhang, C., Tong, X., Shaukat, A., He, Y., et al. (2022) Effects of Probiotics and Gut Microbiota on Bone Metabolism in Chickens: A Review. Metabolites, 12, Article 1000. https://doi.org/10.3390/metabo12101000 |
[4] |
Wit, E. and McClure, J. (2004). Statistics for Microarrays: Design, Analysis, and Inference. 5th Edition, John Wiley & Sons Ltd., 5-18. https://doi.org/10.1002/0470011084 |
[5] |
Jia, L., Tu, Y., Jia, X., Du, Q., Zheng, X., Yuan, Q., et al. (2021) Probiotics Ameliorate Alveolar Bone Loss by Regulating Gut Microbiota. Cell Proliferation, 54, e13075. https://doi.org/10.1111/cpr.13075 |
[6] |
Zaiss, M.M., Jones, R.M., Schett, G. and Pacifici, R. (2019) The Gut-Bone Axis: How Bacterial Metabolites Bridge the Distance. Journal of Clinical Investigation, 129, 3018-3028. https://doi.org/10.1172/jci128521 |
[7] |
Tyagi, A.M., Yu, M., Darby, T.M., Vaccaro, C., Li, J., Owens, J.A., et al. (2018) The Microbial Metabolite Butyrate Stimulates Bone Formation via T Regulatory Cell-Mediated Regulation of WNT10B Expression. Immunity, 49, 1116-1131.e7. https://doi.org/10.1016/j.immuni.2018.10.013 |
[8] |
Li, C., Pi, G. and Li, F. (2021) The Role of Intestinal Flora in the Regulation of Bone Homeostasis. Frontiers in Cellular and Infection Microbiology, 11, Article 579323. https://doi.org/10.3389/fcimb.2021.579323 |
[9] |
Sirufo, M.M., De Pietro, F., Catalogna, A., Ginaldi, L. and De Martinis, M. (2021) The Microbiota-Bone-Allergy Interplay. International Journal of Environmental Research and Public Health, 19, Article 282. https://doi.org/10.3390/ijerph19010282 |
[10] |
Cho, S., Kim, S., Ha, S., Kim, S., Lim, D., Cha, J., et al. (2020) Paraspinal Muscle Changes after Single-Level Posterior Lumbar Fusion: Volumetric Analyses and Literature Review. BMC Musculoskeletal Disorders, 21, Article No. 73. https://doi.org/10.1186/s12891-020-3104-0 |
[11] |
Yan, F. and Polk, D.B. (2011) Probiotics and Immune Health. Current Opinion in Gastroenterology, 27, 496-501. https://doi.org/10.1097/mog.0b013e32834baa4d |
[12] |
Wu, Z., Mehrabi Nasab, E., Arora, P. and Athari, S.S. (2022) Study Effect of Probiotics and Prebiotics on Treatment of OVA-LPS-Induced of Allergic Asthma Inflammation and Pneumonia by Regulating the TLR4/NF-κB Signaling Pathway. Journal of Translational Medicine, 20, Article No. 130. https://doi.org/10.1186/s12967-022-03337-3 |
[13] |
Chen, L., Chang, S., Chang, H., Wu, C., Pan, C., Chang, C., et al. (2021) Probiotic Supplementation Attenuates Age-Related Sarcopenia via the Gut-Muscle Axis in SAMP8 Mice. Journal of Cachexia, Sarcopenia and Muscle, 13, 515-531. https://doi.org/10.1002/jcsm.12849 |
[14] |
Chudzik, A., Orzyłowska, A., Rola, R. and Stanisz, G.J. (2021) Probiotics, Prebiotics and Postbiotics on Mitigation of Depression Symptoms: Modulation of the Brain-Gut-Microbiome Axis. Biomolecules, 11, Article 1000. https://doi.org/10.3390/biom11071000 |
[15] |
Matzaras, R., Anagnostou, N., Nikopoulou, A., Tsiakas, I. and Christaki, E. (2023) The Role of Probiotics in Inflammation Associated with Major Surgery: A Narrative Review. Nutrients, 15, Article 1331. https://doi.org/10.3390/nu15061331 |
[16] |
Roy, S. and Dhaneshwar, S. (2023) Role of Prebiotics, Probiotics, and Synbiotics in Management of Inflammatory Bowel Disease: Current Perspectives. World Journal of Gastroenterology, 29, 2078-2100. https://doi.org/10.3748/wjg.v29.i14.2078 |
[17] |
Zhou, J., Li, M., Chen, Q., Li, X., Chen, L., Dong, Z., et al. (2022) Programmable Probiotics Modulate Inflammation and Gut Microbiota for Inflammatory Bowel Disease Treatment after Effective Oral Delivery. Nature Communications, 13, Article No. 3432. https://doi.org/10.1038/s41467-022-31171-0 |
[18] |
Azad, M.A.K., Sarker, M., Li, T. and Yin, J. (2018) Probiotic Species in the Modulation of Gut Microbiota: An Overview. BioMed Research International, 2018, Article ID: 9478630. https://doi.org/10.1155/2018/9478630 |
[19] |
Guo, M., Liu, H., Yu, Y., Zhu, X., Xie, H., Wei, C., et al. (2023) Lactobacillus rhamnosus GG Ameliorates Osteoporosis in Ovariectomized Rats by Regulating the Th17/Treg Balance and Gut Microbiota Structure. Gut Microbes, 15, Article 2190304. https://doi.org/10.1080/19490976.2023.2190304 |
[20] |
秦锐, 郭刚, 张世峰, 等. 肠道微生物对骨质疏松大鼠/小鼠调节作用机制的研究进展[J]. 工业微生物, 2023, 53(6): 7-9. |
[21] |
梁壮, 董博, 杨蕾, 等. 益生菌补充剂治疗绝经后骨质疏松症或骨量减少的系统评价[J]. 中国微生态学杂志, 2023, 35(5): 532-541. |
[22] |
郭晋青. 维生素D联合益生菌对中老年大鼠骨代谢的影响[D]: [硕士学位论文]. 长春: 吉林大学, 2023. |
[23] |
Sojan, J.M., Gioacchini, G., Giorgini, E., Orlando, P., Tiano, L., Maradonna, F., et al. (2022) Zebrafish Caudal Fin as a Model to Investigate the Role of Probiotics in Bone Regeneration. Scientific Reports, 12, Article No. 8057. https://doi.org/10.1038/s41598-022-12138-z |
[24] |
Mazzotti, A., Langone, L., Arceri, A., Artioli, E., Zielli, S.O., Bonelli, S., et al. (2023) Probiotics in Orthopedics: From Preclinical Studies to Current Applications and Future Perspective. Microorganisms, 11, Article 2021. https://doi.org/10.3390/microorganisms11082021 |
[25] |
Hughes, R.L. and Holscher, H.D. (2021) Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Advances in Nutrition, 12, 2190-2215. https://doi.org/10.1093/advances/nmab077 |
[26] |
Prokopidis, K., Giannos, P., Kirwan, R., Ispoglou, T., Galli, F., Witard, O.C., et al. (2022) Impact of Probiotics on Muscle Mass, Muscle Strength and Lean Mass: A Systematic Review and Meta‐Analysis of Randomized Controlled Trials. Journal of Cachexia, Sarcopenia and Muscle, 14, 30-44. https://doi.org/10.1002/jcsm.13132 |
[27] |
Shams, M., Esmaeili, F., Sadeghi, S., Shanaki-Bavarsad, M., Seyyed Ebrahimi, S.S., Hashemnia, S.M.R., et al. (2023) Bacillus Coagulans T4 and Lactobacillus Paracasei TD3 Ameliorate Skeletal Muscle Oxidative Stress and Inflammation in High-Fat Diet-Fed C57BL/6J Mice. Iranian Journal of Pharmaceutical Research, 22, e135249. https://doi.org/10.5812/ijpr-135249 |
[28] |
Jäger, R., Shields, K.A., Lowery, R.P., De Souza, E.O., Partl, J.M., Hollmer, C., et al. (2016) Probioticbacillus Coagulansgbi-30, 6086 Reduces Exercise-Induced Muscle Damage and Increases Recovery. PeerJ, 4, e2276. https://doi.org/10.7717/peerj.2276 |
[29] |
Ibrahim, I., Syamala, S., Ayariga, J.A., Xu, J., Robertson, B.K., Meenakshisundaram, S., et al. (2022) Modulatory Effect of Gut Microbiota on the Gut-Brain, Gut-Bone Axes, and the Impact of Cannabinoids. Metabolites, 12, Article 1247. https://doi.org/10.3390/metabo12121247 |
[30] |
Nath, A., Molnár, M.A., Csighy, A., Kőszegi, K., Galambos, I., Huszár, K.P., et al. (2018) Biological Activities of Lactose-Based Prebiotics and Symbiosis with Probiotics on Controlling Osteoporosis, Blood-Lipid and Glucose Levels. Medicina, 54, Article 98. https://doi.org/10.3390/medicina54060098 |