[1] |
夏明睿, 贺永(2022). 功能磁共振脑成像机遇和挑战——中国十年来发展成果及展望. 磁共振成像, 13(10), 23-36, 65. |
[2] |
Allen, R. J., & Ueno, T. (2018). Multiple High-Reward Items Can Be Prioritized in Working Memory but with Greater Vulnerability to Interference. Attention, Perception, & Psychophysics, 80, 1731-1743. https://doi.org/10.3758/s13414-018-1543-6 |
[3] |
Baddeley, A. D., & Hitch, G. (1974). Working Memory. Psychology of Learning and Motivation, 8, 47-89. https://doi.org/10.1016/s0079-7421(08)60452-1 |
[4] |
Brissenden, J. A., Tobyne, S. M., Osher, D. E., Levin, E. J., Halko, M. A., & Somers, D. C. (2018). Topographic Cortico-Cerebellar Networks Revealed by Visual Attention and Working Memory. Current Biology, 28, 3364-3372.e5. https://doi.org/10.1016/j.cub.2018.08.059 |
[5] |
Cowan, N. (2000). The Magical Number 4 in Short-Term Memory: A Reconsideration of Mental Storage Capacity. Behavioral and Brain Sciences, 24, 87-114. https://doi.org/10.1017/s0140525x01003922 |
[6] |
Cowan, N., Elliott, E. M., Saults, J. S., & Mclaughlin, J. A. (2006). The Relationship between Working Memory Capacity and Attentional Control. Journal of Memory and Language, 54, 1-19. |
[7] |
Cowan, N., Elliott, E. M., Saults, J. S., & Mclaughlin, J. A. (2005). On the Capacity for Attention: The Neuroanatomy of Individual Differences. Journal of Experimental Psychology: General, 134, 1-26. |
[8] |
Desimone, R., & Duncan, J. (1995). Neural Mechanisms of Selective Visual Attention. Annual Review of Neuroscience, 18, 193-222. https://doi.org/10.1146/annurev.ne.18.030195.001205 |
[9] |
Diaz, J. A., & Spitzer, B. (2021). Dissociating the Roles of α Oscillation Sub-Bands in Visual Working Memory. NeuroImage, 230, 1-12. |
[10] |
Dube, B., Emrich, S. M., & Al-Aidroos, N. (2017). More than a Filter: Feature-Based Attention Regulates the Distribution of Visual Working Memory Resources. Journal of Experimental Psychology: Human Perception and Performance, 43, 1843-1854. https://doi.org/10.1037/xhp0000428 |
[11] |
Formica, S., Palenciano, A. F., Vermeylen, L., Myers, N. E., Brass, M., & González-García, C. (2024). Internal Attention Modulates the Functional State of Novel Stimulus-Response Associations in Working Memory. Cognition, 245, Article ID: 105739. https://doi.org/10.1016/j.cognition.2024.105739 |
[12] |
Günseli, E., Fahrenfort, J. J., van Moorselaar, D., Daoultzis, K. C., Meeter, M., & Olivers, C. N. L. (2019). EEG Dynamics Reveal a Dissociation between Storage and Selective Attention within Working Memory. Scientific Reports, 9, Article No. 13499. https://doi.org/10.1038/s41598-019-49577-0 |
[13] |
Hajonides, J. E., Ede, F., van Stokes, M. G., & Nobre, A. C. (2020). Comparing the Prioritization of Items and Feature-Dimensions in Visual Working Memory. Journal of Vision, 20, 25. |
[14] |
Hamblin-Frohman, J., & Becker, S. I. (2023). Attentional Selection Is a Sufficient Cause for Visual Working Memory Interference. Journal of Vision, 23, 15. |
[15] |
Huang, L. (2025). Comprehensive Exploration of Visual Working Memory Mechanisms Using Large-Scale Behavioral Experiment. Nature Communications, 16, Article No. 1383. https://doi.org/10.1038/s41467-025-56700-5 |
[16] |
Kim, S., & Cho, Y. S. (2024). Feature-based Attentional Control for Distractor Suppression. Attention, Perception, & Psychophysics, 86, 1075-1085. https://doi.org/10.3758/s13414-024-02858-x |
[17] |
Kong, G., & Fougnie, D. (2019). Visual Search within Working Memory. Journal of Experimental Psychology: General, 148, 1688-1700. https://doi.org/10.1037/xge0000555 |
[18] |
Li, D., Zhao, C., Guo, J., Kong, Y., Li, H., Du, B. et al. (2021). Visual Working Memory Guides Spatial Attention: Evidence from α Oscillations and Sustained Potentials. Neuropsychologia, 151, Article ID: 107719. https://doi.org/10.1016/j.neuropsychologia.2020.107719 |
[19] |
Li, S., Cai, Y., Liu, J., Li, D., Feng, Z., Chen, C. et al. (2017). Dissociated Roles of the Parietal and Frontal Cortices in the Scope and Control of Attention during Visual Working Memory. NeuroImage, 149, 210-219. https://doi.org/10.1016/j.neuroimage.2017.01.061 |
[20] |
Liang, G., & Scolari, M. (2020). Limited Interactions between Space-and Feature-Based Attention in Visually Sparse Displays. Journal of Vision, 20, 1-21. https://doi.org/10.1167/jov.20.4.5 |
[21] |
Liang, T., Chen, X., Ye, C., Zhang, J., & Liu, Q. (2019). Electrophysiological Evidence Supports the Role of Sustained Visuospatial Attention in Maintaining Visual WM Contents. International Journal of Psychophysiology, 146, 54-62. https://doi.org/10.1016/j.ijpsycho.2019.09.011 |
[22] |
Luck, S. J., & Vogel, E. K. (1997). The Capacity of Visual Working Memory for Features and Conjunctions. Nature, 390, 279-281. https://doi.org/10.1038/36846 |
[23] |
Luck, S. J., & Vogel, E. K. (2013). Visual Working Memory Capacity: From Psychophysics and Neurobiology to Individual Differences. Trends in Cognitive Sciences, 17, 391-400. https://doi.org/10.1016/j.tics.2013.06.006 |
[24] |
Luck, S. J., Hillyard, S. A., Mouloua, M., & Hawkins, H. L. (1996). Mechanisms of Visual-Spatial Attention: Resource Allocation or Uncertainty Reduction? Journal of Experimental Psychology: Human Perception and Performance, 22, 725-737. https://doi.org/10.1037//0096-1523.22.3.725 |
[25] |
Martin-Garcia, O., da Silva, P. H. R., De Smet, S., De Witte, S., Brunoni, A. R., Vanderhasselt, M. et al. (2025). Baseline Gray Matter Volume Associates with Working Memory Performance after Prefrontal Transcranial Direct Current Stimulation. Behavioural Brain Research, 481, Article ID: 115416. https://doi.org/10.1016/j.bbr.2025.115416 |
[26] |
McNab, F., & Klingberg, T. (2008). Prefrontal Cortex and Basal Ganglia Control Access to Working Memory. Nature Neuroscience, 11, 103-107. https://doi.org/10.1038/nn2024 |
[27] |
Olivers, C. N., & Roelfsema, P. R. (2023). Attention for Action in Visual Working Memory. Cortex, 131, 179-194. |
[28] |
Panichello, M. F., & Buschman, T. J. (2021). Shared Mechanisms Underlie the Control of Working Memory and Attention. Nature, 592, 601-605. https://doi.org/10.1038/s41586-021-03390-w |
[29] |
Schneider, D., Barth, A., Getzmann, S., & Wascher, E. (2017). On the Neural Mechanisms Underlying the Protective Function of Retroactive Cuing against Perceptual Interference: Evidence by Event-Related Potentials of the EEG. Biological Psychology, 124, 47-56. https://doi.org/10.1016/j.biopsycho.2017.01.006 |
[30] |
Schneider, K. A. (1995). Working Memory and Attention: A Combined Approach. Psychological Research, 57, 179-188. |
[31] |
Schroeder, S. C. Y., Ball, F., & Busch, N. A. (2018). The Role of Alpha Oscillations in Distractor Inhibition during Memory Retention. European Journal of Neuroscience, 48, 2516-2526. https://doi.org/10.1111/ejn.13852 |
[32] |
van der Meulen, J. H. (2021). Prioritising Feature Representations in Visual Working Memory. Master’s Thesis, University of Oxford. |
[33] |
Vogel, E. K., & Machizawa, M. G. (2004). Neural Activity Predicts Individual Differences in Visual Working Memory Capacity. Nature, 428, 748-751. https://doi.org/10.1038/nature02447 |
[34] |
Williams, M., Pouget, P., Boucher, L., & Woodman, G. F. (2013). Visual-Spatial Attention Aids the Maintenance of Object Representations in Visual Working Memory. Memory & Cognition, 41, 698-715. https://doi.org/10.3758/s13421-013-0296-7 |
[35] |
Woodman, G. F., & Luck, S. J. (2009). Why Is Information Displaced from Visual Working Memory during Visual Search? Visual Cognition, 18, 275-295. https://doi.org/10.1080/13506280902734326 |
[36] |
Zhan, M., Pallier, C., Agrawal, A., Dehaene, S., & Cohen, L. (2023). Does the Visual Word Form Area Split in Bilingual Readers? a Millimeter-Scale 7-T fMRI Study. Science Advances, 9, eadf6140. https://doi.org/10.1126/sciadv.adf6140 |
[37] |
Zhong, C., Qu, Z., Yang, N., Sun, M., Wang, Y., & Ding, Y. (2024). Susceptibility to Attentional Capture by Target-Matching Distractors Predicts High Visual Working Memory Capacity. Psychological Science, 35, 1203-1216. https://doi.org/10.1177/09567976241279520 |