[1] |
Buettner, S., van Vugt, J.L.A., IJzermans, J. and Groot Koerkamp, B. (2017) Intrahepatic Cholangiocarcinoma: Current Perspectives. OncoTargets and Therapy, 10, 1131-1142. https://doi.org/10.2147/ott.s93629 |
[2] |
Amini, N., Ejaz, A., Spolverato, G., Kim, Y., Herman, J.M. and Pawlik, T.M. (2014) Temporal Trends in Liver-Directed Therapy of Patients with Intrahepatic Cholangiocarcinoma in the United States: A Population-Based Analysis. Journal of Surgical Oncology, 110, 163-170. https://doi.org/10.1002/jso.23605 |
[3] |
Hu, L., Zhang, X., Weiss, M., Popescu, I., Marques, H.P., Aldrighetti, L., et al. (2019) Recurrence Patterns and Timing Courses Following Curative-Intent Resection for Intrahepatic Cholangiocarcinoma. Annals of Surgical Oncology, 26, 2549-2557. https://doi.org/10.1245/s10434-019-07353-4 |
[4] |
Cambridge, W.A., Fairfield, C., Powell, J.J., Harrison, E.M., Søreide, K., Wigmore, S.J., et al. (2020) Meta-Analysis and Meta-Regression of Survival after Liver Transplantation for Unresectable Perihilar Cholangiocarcinoma. Annals of Surgery, 273, 240-250. https://doi.org/10.1097/sla.0000000000003801 |
[5] |
Banales, J.M., Marin, J.J.G., Lamarca, A., Rodrigues, P.M., Khan, S.A., Roberts, L.R., et al. (2020) Cholangiocarcinoma 2020: The Next Horizon in Mechanisms and Management. Nature Reviews Gastroenterology & Hepatology, 17, 557-588. https://doi.org/10.1038/s41575-020-0310-z |
[6] |
Saha, S.K., Zhu, A.X., Fuchs, C.S. and Brooks, G.A. (2016) Forty-Year Trends in Cholangiocarcinoma Incidence in the U.S.: Intrahepatic Disease on the Rise. The Oncologist, 21, 594-599. https://doi.org/10.1634/theoncologist.2015-0446 |
[7] |
Xiao, Y. and Yu, D. (2021) Tumor Microenvironment as a Therapeutic Target in Cancer. Pharmacology & Therapeutics, 221, Article ID: 107753. https://doi.org/10.1016/j.pharmthera.2020.107753 |
[8] |
Zhang, A., Miao, K., Sun, H. and Deng, C. (2022) Tumor Heterogeneity Reshapes the Tumor Microenvironment to Influence Drug Resistance. International Journal of Biological Sciences, 18, 3019-3033. https://doi.org/10.7150/ijbs.72534 |
[9] |
Hu, S., Ma, J., Su, C., Chen, Y., Shu, Y., Qi, Z., et al. (2021) Engineered Exosome-Like Nanovesicles Suppress Tumor Growth by Reprogramming Tumor Microenvironment and Promoting Tumor Ferroptosis. Acta Biomaterialia, 135, 567-581. https://doi.org/10.1016/j.actbio.2021.09.003 |
[10] |
Yang, E., Wang, X., Gong, Z., Yu, M., Wu, H. and Zhang, D. (2020) Exosome-Mediated Metabolic Reprogramming: The Emerging Role in Tumor Microenvironment Remodeling and Its Influence on Cancer Progression. Signal Transduction and Targeted Therapy, 5, Article No. 242. https://doi.org/10.1038/s41392-020-00359-5 |
[11] |
Zhou, Y., Zhang, Y., Gong, H., Luo, S. and Cui, Y. (2021) The Role of Exosomes and Their Applications in Cancer. International Journal of Molecular Sciences, 22, Article 12204. https://doi.org/10.3390/ijms222212204 |
[12] |
Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977. https://doi.org/10.1126/science.aau6977 |
[13] |
Zhang, H., Xing, J., Dai, Z., Wang, D. and Tang, D. (2022) Exosomes: The Key of Sophisticated Cell-Cell Communication and Targeted Metastasis in Pancreatic Cancer. Cell Communication and Signaling, 20, Article No. 9. https://doi.org/10.1186/s12964-021-00808-w |
[14] |
Nicolini, A., Ferrari, P. and Biava, P.M. (2021) Exosomes and Cell Communication: From Tumour-Derived Exosomes and Their Role in Tumour Progression to the Use of Exosomal Cargo for Cancer Treatment. Cancers, 13, Article 822. https://doi.org/10.3390/cancers13040822 |
[15] |
Luo, C., Xin, H., Zhou, Z., Hu, Z., Sun, R., Yao, N., et al. (2022) Tumor‐Derived Exosomes Induce Immunosuppressive Macrophages to Foster Intrahepatic Cholangiocarcinoma Progression. Hepatology, 76, 982-999. https://doi.org/10.1002/hep.32387 |
[16] |
Zhang, M., Yang, H., Wan, L., Wang, Z., Wang, H., Ge, C., et al. (2020) Single-Cell Transcriptomic Architecture and Intercellular Crosstalk of Human Intrahepatic Cholangiocarcinoma. Journal of Hepatology, 73, 1118-1130. https://doi.org/10.1016/j.jhep.2020.05.039 |
[17] |
Haga, H., Yan, I.K., Takahashi, K., Wood, J., Zubair, A. and Patel, T. (2015) Tumour Cell-Derived Extracellular Vesicles Interact with Mesenchymal Stem Cells to Modulate the Microenvironment and Enhance Cholangiocarcinoma Growth. Journal of Extracellular Vesicles, 4, Article ID: 24900. https://doi.org/10.3402/jev.v4.24900 |
[18] |
Ni, Q., Zhang, H., Shi, X. and Li, X. (2022) Exosomal MicroRNA-23a-3p Contributes to the Progression of Cholangiocarcinoma by Interaction with Dynamin3. Bioengineered, 13, 6208-6221. https://doi.org/10.1080/21655979.2022.2037249 |
[19] |
Moris, D., Palta, M., Kim, C., Allen, P.J., Morse, M.A. and Lidsky, M.E. (2022) Advances in the Treatment of Intrahepatic Cholangiocarcinoma: An Overview of the Current and Future Therapeutic Landscape for Clinicians. CA: A Cancer Journal for Clinicians, 73, 198-222. https://doi.org/10.3322/caac.21759 |
[20] |
Shen, L., Chen, G., Xi,a Q., et al. (2019) Exosomal miR-200 Family as Serum Biomarkers for Early Detection and Prognostic Prediction of Cholangiocarcinoma. International Journal of Clinical and Experimental Pathology, 12, 3870-3876. |