高频振荡通气在儿童急性呼吸窘迫综合征中的应用进展与争议
Advances and Controversies in the Application of High-Frequency Oscillatory Ventilation in Pediatric Acute Respiratory Distress Syndrome
DOI: 10.12677/acm.2025.1541028, PDF, HTML, XML,    科研立项经费支持
作者: 金非凡, 党红星*:重庆医科大学附属儿童医院重症医学科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,重庆
关键词: 高频振荡通气急性呼吸窘迫综合征儿童结局High-Frequency Oscillatory Ventilation Acute Respiratory Distress Syndrome Children Outcomes
摘要: 急性呼吸窘迫综合征(Acute Respiratory Distress Syndrome, ARDS)是一种常见且致死率高的肺部疾病,常规机械通气对改善生存率的效果有限,而高频振荡通气(high frequency oscillatory ventilation, HFOV)作为肺保护性通气模式,已广泛用于ARDS的治疗。尽管HFOV在理论上具有潜在优势,但其对儿童急性呼吸窘迫综合征(Pediatric ARDS, PARDS)的疗效仍存在争议。本文综述了HFOV在PARDS中的应用研究进展,探讨了HFOV的核心原理、早期和晚期应用时机对预后的影响、HFOV与容量保证(HFOV-VG)模式的联合应用效果以及其潜在的风险与不良反应,并提出了未来研究方向。
Abstract: Acute Respiratory Distress Syndrome (ARDS) is a common and high-mortality pulmonary disease, and conventional mechanical ventilation has limited efficacy in improving survival rates. High-frequency oscillatory ventilation (HFOV), as a lung-protective ventilation strategy, has been widely used in the treatment of ARDS. Despite its theoretical advantages, the efficacy of HFOV in pediatric ARDS (PARDS) remains controversial. This review summarizes the research progress on the application of HFOV in PARDS, discussing the core principles of HFOV, the impact of early and late application timing on prognosis, the combined effect of HFOV and volume guarantee (HFOV-VG) mode, as well as its potential risks and adverse effects, and proposes directions for future research.
文章引用:金非凡, 党红星. 高频振荡通气在儿童急性呼吸窘迫综合征中的应用进展与争议[J]. 临床医学进展, 2025, 15(4): 1053-1060. https://doi.org/10.12677/acm.2025.1541028

1. 引言

急性呼吸窘迫综合征(Acute Respiratory Distress Syndrome, ARDS)是一种重症监护病房(ICU)中常见的高死亡率严重肺部疾病[1]。传统观点认为,常规机械通气在改善ARDS患者生存率方面效果有限,而高频振荡通气(High Frequency Oscillatory Ventilation, HFOV)是一种具有肺保护作用的通气模式,被认为有助于改善ARDS的预后[2]

HFOV应用已有数十年的应用历史,但近年来研究发现,尽管理论上HFOV具有许多潜在优势[3]-[5],但其对ARDS的影响仍无明确结论。在成人ARDS的治疗中,部分研究发现早期应用HFOV并未能显著降低死亡率,甚至可能增加院内死亡率[6]。在儿童ARDS (Pediatric ARDS, PARDS)治疗中,HFOV虽也被广泛使用,但其对PARDS患儿临床结局的影响仍未确定[7]-[9]。有研究认为HFOV有助于改善儿童患者预后[10]-[13],或者效果与其他通气相似[14] [15]。也有研究表明,HFOV对PARDS的短期氧合改善可能有一定效果,但不能改善患儿预后甚至会导致不良后果,并可能与较高的死亡风险相关[16] [17]

HFOV对PARDS疗效和预后的影响存在争议,2023年最新的PARDS专家共识也未能对HFOV是否可以替代常规通气提出明确建议[18]。故本文系统综述HFOV在PARDS中的应用价值和争议,并探讨其未来研究方向。

2. PARDS的主要病理生理特征

ARDS主要病理生理改变是肺泡上皮–内皮屏障的损伤,导致氧的弥散发生障碍。富含蛋白质的炎症液体在肺泡内积聚,进而引起肺重量增加和有效肺泡的损失。肺泡中液体的累积及通透性屏障的损伤通常发生在炎症失调、白细胞和血小板异常活化以及凝血途径失控激活的情况下。其病理生理特征包括肺容积减少、肺顺应性降低以及严重的通气/血流比例失调[19]。此外,ARDS患者通常还伴有肺泡表面活性物质的丢失和淋巴引流功能障碍以及肺内液体失衡[20],最终表现为以呼吸窘迫为主要表现的进行性低氧血症、功能性残气量和肺顺应性降低为特征的非心源性肺水肿临床综合征,肺部影像学多表现为双肺非均一性的浸润性病变[18]

发生ARDS的风险包括多种诱发因素,例如误吸、创伤、败血症、肺炎、吸入性损伤、血液制品输注或烧伤。但PARDS与成人ARDS在病因上存在显著差异,成人ARDS的主要病因是脓毒症,而PARDS最常见的基础疾病是呼吸道和肺部感染[18] [21]。儿童与成人ARDS的病因差异,可能导致其疾病进展存在差异。此外,儿童的肺泡数量和肺血管系统尚未完全发育,且儿童的气管及支气管较成人短且狭窄,管壁的支撑作用差,呼吸肌肉发育差,呼吸时肺扩张潜力受到限制,可能会导致PARDS的病理生理过程和结局与成人不同[22]。另外,根据我们前期研究,PARDS不同的临床表型有着显著的异质性[23],这可能也是导致接受相似治疗的患儿最终出现不同预后的原因。

3. HFOV的核心原理

HFOV的核心原理是气体高频振荡,即在提供极小潮气量的同时,通过频繁的气道压力波动提高气体交换效率的机械通气方式。与常规机械通气不同,HFOV通常采用4~15 Hz的高频气流,形成正弦压力波形。高呼吸频率结合连续的平均气道压和极小的潮气量,可以预防肺泡塌陷,并可能重新开放已塌陷的肺泡[24],也能减少峰值气道压以防止肺泡过度膨胀引起肺损伤,从而更均匀有效地进行气体交换,也使呼气相具备独特的主动特性,可有效改善肺部二氧化碳清除[25]。这种设计具有双重优势:一方面,HFOV能通过提供较高的平均气道压来促进肺泡复张,通过极低潮气量的高频循环,减少了无效气体交换,实现更均匀、高效的气体弥散;另一方面通过较小的潮气量降低肺泡过度膨胀的风险,同时减少了肺泡上皮的机械性牵拉,降低了肺部气体交换过程中的剪切应力,最终减少了呼吸机相关性肺损伤的发生。

然而,尽管HFOV在理论上具有诸多的优势,但其效果在实践中存在差异,究其原因,可能在于受损肺部的机械特性(如局部阻力、惰性和弹性)存在时间和空间异质性,导致不同肺区对通气频率的反应不同。

4. HFOV在PARDS中早期和晚期应用

关于HFOV的应用时机,目前尚无统一定论。主流学术观点主张将其作为常频机械通气失败后的补救策略,但关于其早期与晚期介入对预后的影响仍存较大争议。多项临床研究通过不同设计方法得出差异化结论:一项队列研究比较了早期(插管后≤24小时)与晚期(插管后>24小时)启动HFOV的效果,发现早期应用并未显著改善患者的生存率[16],这可能与研究纳入的早期插管患者的基础病情更危重密切相关;另一项小样本(34例)的回顾性研究中也得出了类似结论,表明早期(插管后≤24小时)与晚期(插管后>24小时)启动HFOV的死亡率无统计学差异,但提示早期HFOV的使用与机械通气时间延长相关[26],该结论受限于样本代表性不足、样本量不足需谨慎解读;Bateman等人进行的前瞻性多中心研究(n = 2449)进一步揭示,与HFOV的晚期使用(插管后>48小时)相比,在PARDS中早期使用HFOV (插管后24~48小时内)虽未改善死亡率,却显著延长机械通气持续时间[27],但该研究存在HFOV应用的非随机及未充分校正疾病动态演变轨迹的方法学局限;值得注意的是,Courtney M Rowan等人的多中心研究显示,早期应用HFOV (插管后≤48小时)相比晚期应用HFOV (插管后>48小时),可以提升生存获益,但与持续应用常频机械通气超过7天的对照组相比则无显著差异[28],该结果可能受免疫抑制状态、肺毒性药物暴露及继发感染等混杂因素干扰;另外,一项包含326名患者的亚洲多中心研究通过采用倾向性评分匹配的方法排除了部分可能的混杂因素,结果发现第一周内使用HFOV与PARDS患者28天死亡率的增加相关[17],不过,由于遗传匹配、倾向性评分匹配无法完全排除所有未纳入的混杂因素,可能对结果造成一定影响。

综上所述,当前关于早期应用HFOV对患者预后影响的临床研究尚未达成共识,这种结果异质性可能源于以下三方面因素:其一,HFOV介入时机的选择缺乏客观量化标准,临床决策存在显著主观差异性;其二,不同治疗阶段HFOV参数设置的显著差异可能影响疗效判定;其三,现有研究对肺源性与非肺源性致病因素交互作用及病情危重程度对肺损伤病理机制的差异性影响尚未建立完善的校正模型。为明确HFOV的最佳干预时机,需开展高质量大规模随机对照试验,通过建立动态通气参数优化方案,为精准化呼吸支持策略提供循证依据。

5. HFOV对于PARDS预后的影响

关于HFOV对PARDS预后的影响呈现显著异质性。现有研究显示,基础疾病和PARDS病因可能显著影响HFOV的临床效应:在免疫功能低下、肿瘤患者及脓毒症患者合并PARDS时,通常预后较差[16],这可能与此类患者常伴有多器官功能障碍有关。而针对儿童造血干细胞移植后的患者,有研究表明,早期应用HFOV的患儿生存率较高[28],这可能与更早启动HFOV,及时改善氧合、减轻肺脏负担有关。不同病理生理机制驱动的PARDS对HFOV呈现差异化反应。在心脏病术后的难治性呼吸衰竭患儿中,HFOV通过维持持续气道正压,有效降低了传统通气模式下的高气道压风险,改善气体交换并避免有害的心肺相互作用[29]。最近国内一项单中心前瞻性随机对照研究证实,与常频机械通气相比,HFOV可更快改善中重度ARDS患者的氧合水平,但其对预后的改善与常频机械通气相比未达统计学差异[30],该结果可能与入组病例以肺源性ARDS为主相关。但同一作者在之前的另一项关于呼吸道合胞病毒引起的PARDS患者的随机对照研究中,HFOV在治疗重症呼吸道合胞病毒肺炎,特别是伴严重气道高反应和低氧血症的患者时,较常频机械通气可以更早地改善患儿的通气和氧合[31],这可能与呼吸道合胞病毒常常会引起气道阻力增高、喘憋明显的病理特点有关。在一项关于严重胎粪吸入综合征合并严重ARDS及拔管后呼吸支持的研究中发现HFOV可有效改善肺通气和氧合功能,在缩短呼吸机治疗时间、降低并发症发生率方面存在优势[4] [32]。关于生存结局的循证证据仍存在争议。一项前瞻性随机对照试验显示,HFOV在改善氧合方面,尤其是重度PARDS患者中具有一定优势,但对死亡率的影响并不显著[33]。另一项涵盖2605例患者的Meta分析表明,HFOV的使用与死亡率无显著关联,但可能延长机械通气时间[9]。然而,我们的研究发现,HFOV的使用与28天死亡率的增加有关,但机械通气时间无显著差异[17]

尽管与常规机械通气相比,HFOV在生存率方面的改善不显著,但HFOV在改善氧合方面表现出潜力[9] [17] [26]。Guo等人的研究发现,HFOV能够有效缓解那些在使用常规机械通气后仍出现进行性恶化的重度PARDS患者的低氧血症,并促进二氧化碳的排除,但生存获益有限[10]。PARDS患者对HFOV通气辅助治疗的反应存在很大的异质性,因此确定此治疗是否可以为特定儿童提供具有临床意义的益处是提供安全有效的临床治疗的关键目标。这种治疗反应异质性提示:单纯以死亡率作为评估指标可能低估HFOV的临床价值,因为许多ARDS的患者通常伴有多器官功能障碍,而不仅仅是由于肺部病变引起的低氧血症[34]。事实上,PARDS患儿的死亡原因以急性循环衰竭为主[35]。因此,未来的研究应考虑对PARDS患儿建立基于病因学、病理生理分型的精准分层体系,以更精确地评估HFOV的效果,实现HFOV的精准化临床应用。

6. 高频振荡通气联合容量保证(High-Frequency Oscillatory Ventilation Combined with Volume Guarantee, HFOV-VG)

HFOV-VG是一种基于传统HFOF改良的通过精准控制患者的通气来减少肺损伤的通气策略,HFOV-VG模式可以随着通气时间延长,保持相对稳定、波动较小的潮气量,并且可以提供理想的目标通气[36]。模式理论上适用于所有符合HFOV适应证的患儿,但目前的研究主要集中在严重新生儿呼吸窘迫综合症,特别是早产儿以及需要长期有创机械通气的重症支气管肺发育不良患者上[37]-[39]。近年来多项临床研究聚焦于HFOV-VG的临床效益。Chen等人的研究显示,HFOV-VG可降低早产儿死亡率和支气管肺发育不良发生率[40]。国内一项前瞻性随机临床试验表明,HFOV-VG在治疗早产儿呼吸窘迫综合征方面提供了更优的通气效果和气体交换[41]。此外,HFOV-VG还能够提供更好的通气效果,减少呼吸机带来的肺损伤,降低SpO2的波动和促进CO2的清除,从而有效防止低氧血症和低碳酸血症的发生[42]-[45]。HFOV-VG在患儿矫正胎龄36周时表现出更好的预后,且这种优势可持续至2岁[46]。在特定临床场景中,HFOV-VG展现出独特的应用价值。其在减少心脏手术后炎症反应、降低高碳酸血症和低碳酸血症的发生率以及缩短机械通气时间方面显示出明显优势[42],这可能与HFOV-VG呼吸机能够自动调整振幅,以确保达到目标潮气量有关。尽管如此,目前仍缺乏足够的临床证据来全面支持这一呼吸机技术的优势,未来需要进一步研究其最佳参数设置和临床应用价值。

7. HFOV的潜在风险与不良反应

机械通气作为PARDS患者的重要呼吸支持手段,对于患者具有一定临床获益,但如果HFOV设置不当且未根据个体患者的呼吸系统力学进行调整,可能引发多系统并发症,进一步加重肺部的负担。对于呼吸系统来,HFOV的高振幅压力在改善氧合的同时,也可能导致肺泡过度膨胀,导致气压伤风险显著增加,表现为气胸、纵隔气肿、肺气漏综合征等,振荡压力波形异常可加重呼吸机相关性肺损伤,尤其是肺的非均质病变区域更易出现剪切力损伤。对于循环系统,过高的平均气道压一方面可能会抑制静脉回流,降低心输出量;另一方面还可以通过胸内压升高直接影响心室舒张功能,导致重要器官灌注不足,从而对心血管系统产生不良影响,这对患有先天性心脏病的儿童尤为重要[47] [48]

对于新生儿,特别是早产儿来说,其脑血管自主调节功能未成熟,HFOV引起的脑血流量的波动可能诱发脑血流动力学紊乱,增加脑损伤和脑室内出血的风险,影响患者神经发育的远期预后[49]。此外,HFOV产生的噪音比常规机械通气更大[50],不仅干扰新生儿睡眠周期,还可增加新生儿应激反应、增加生长迟缓、听力损失、支气管肺发育不良、早产儿视网膜病变、脑室内出血、脑室周围白质软化和发育迟缓等问题的风险[51]。而且,根据我们的研究,当进行气管插管或长期进行机械通气时,患者发生呼吸机相关性肺炎风险急剧增加,可进一步加重患者感染风险和肺部损伤,同时增加患者的心理负担[52] [53]。因此,在使用HFOV时,需严格监测和调整通气参数,以减少不良反应的发生。

8. 总结与展望

目前,HFOV仍多作为常规通气失败后的抢救性干预措施。HFOV在不同的年龄段和病理生理条件下,应用效果可能存在显著的差异。由于缺乏统一的使用标准和临床管理协议,目前对HFOV在PARDS治疗中的研究仍不充分且缺乏严格对照和深入分析,未来需要开展高质量的多中心、前瞻性随机对照研究,采用标准化的呼吸机干预方案,最大程度的控制混杂因素的干扰,并通过分层分析(如疾病严重程度分级、年龄组及原发病类型),从而构建多样化的疗效评价体系,同时,要避免单独将死亡率作为终点指标,需系统评价呼吸机使用天数、ICU住院时长、氧合指数的动态变化、远期神经损伤及远期肺功能的恢复等复合终点,以明确HFOV在PARDS中的最佳应用策略。并通过大数据分析和机器学习的方式逐步推进PARDS患者的个体化精准治疗,实现通气参数的实时闭环调控,将HFOV从“抢救手段”升级为“精准治疗工具”,最终改善PARDS患者的预后。

基金项目

重庆医科大学未来医学青年创新团队发展支持计划(2021-W0111);重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX0983)。

NOTES

*通讯作者。

参考文献

[1] Diamond, M., Peniston, H.L., Sanghavi, D.K., et al. (2025) Acute Respiratory Distress Syndrome. StatPearls Publishing.
[2] Murthy, P.R. and Ak, A.K. (2025) High Frequency Ventilation. StatPearls Publishing.
[3] Grotberg, J.C., Reynolds, D. and Kraft, B.D. (2023) Management of Severe Acute Respiratory Distress Syndrome: A Primer. Critical Care, 27, Article No. 289.
https://doi.org/10.1186/s13054-023-04572-w
[4] Yang, G., Qiao, Y., Sun, X., Yang, T., Lv, A. and Deng, M. (2021) The Clinical Effects of High-Frequency Oscillatory Ventilation in the Treatment of Neonatal Severe Meconium Aspiration Syndrome Complicated with Severe Acute Respiratory Distress Syndrome. BMC Pediatrics, 21, Article No. 560.
https://doi.org/10.1186/s12887-021-03042-y
[5] Miller, A.G., Tan, H.L., Smith, B.J., Rotta, A.T. and Lee, J.H. (2022) The Physiological Basis of High-Frequency Oscillatory Ventilation and Current Evidence in Adults and Children: A Narrative Review. Frontiers in Physiology, 13, Article ID: 813478.
https://doi.org/10.3389/fphys.2022.813478
[6] Goligher, E.C., Munshi, L., Adhikari, N.K.J., Meade, M.O., Hodgson, C.L., Wunsch, H., et al. (2017) High-Frequency Oscillation for Adult Patients with Acute Respiratory Distress Syndrome. A Systematic Review and Meta-Analysis. Annals of the American Thoracic Society, 14, S289-S296.
https://doi.org/10.1513/annalsats.201704-341ot
[7] Kneyber, M.C.J., Cheifetz, I.M. and Curley, M.A.Q. (2020) High-Frequency Oscillatory Ventilation for PARDS: Awaiting Prospect. Critical Care, 24, Article No. 118.
https://doi.org/10.1186/s13054-020-2829-3
[8] Kanthimathinathan, H.K. and Kneyber, M.C.J. (2020) Impact of HFOV in pARDS Outcomes: Questions Remain. Critical Care, 24, Article No. 116.
https://doi.org/10.1186/s13054-020-2837-3
[9] Junqueira, F.M.D., Nadal, J.A.H., Brandão, M.B., Nogueira, R.J.N. and de Souza, T.H. (2021) High‐Frequency Oscillatory Ventilation in Children: A Systematic Review and Meta‐Analysis. Pediatric Pulmonology, 56, 1872-1888.
https://doi.org/10.1002/ppul.25428
[10] Guo, Y., Wang, Z., Li, Y., Pan, L., Yang, L., Hu, Y., et al. (2016) High-Frequency Oscillatory Ventilation Is an Effective Treatment for Severe Pediatric Acute Respiratory Distress Syndrome with Refractory Hypoxemia. Therapeutics and Clinical Risk Management, 12, 1563-1571.
https://doi.org/10.2147/tcrm.s115884
[11] Yehya, N., Topjian, A.A., Thomas, N.J. and Friess, S.H. (2014) Improved Oxygenation 24 Hours after Transition to Airway Pressure Release Ventilation or High-Frequency Oscillatory Ventilation Accurately Discriminates Survival in Immunocompromised Pediatric Patients with Acute Respiratory Distress Syndrome. Pediatric Critical Care Medicine, 15, e147-e156.
https://doi.org/10.1097/pcc.0000000000000069
[12] Li, S., Wang, X., Li, S. and Yan, J. (2013) High-Frequency Oscillatory Ventilation for Cardiac Surgery Children with Severe Acute Respiratory Distress Syndrome. Pediatric Cardiology, 34, 1382-1388.
https://doi.org/10.1007/s00246-013-0655-y
[13] Yildizdas, D., Yapicioglu, H., Bayram, I., Yilmaz, L. and Sertdemir, Y. (2009) High-Frequency Oscillatory Ventilation for Acute Respiratory Distress Syndrome. The Indian Journal of Pediatrics, 76, 921-927.
https://doi.org/10.1007/s12098-009-0151-9
[14] Ning, B., Liang, L., Lyu, Y., Yu, Y. and Li, B. (2020) The Effect of High-Frequency Oscillatory Ventilation or Airway Pressure Release Ventilation on Children with Acute Respiratory Distress Syndrome as a Rescue Therapy. Translational Pediatrics, 9, 213-220.
https://doi.org/10.21037/tp-19-178
[15] Arya, S., Kingma, M.L., Dornette, S., Weber, A., Bardua, C., Mierke, S., et al. (2022) Comparison of Airway Pressure Release Ventilation to High-Frequency Oscillatory Ventilation in Neonates with Refractory Respiratory Failure. International Journal of Pediatrics, 2022, Article ID: 7864280.
https://doi.org/10.1155/2022/7864280
[16] Al-Ayed, T., Alsarhi, I.B., Alturki, A., Aljofan, F., Alofisan, T., Abdulsalam, M.A., et al. (2023) The Outcome of High-Frequency Oscillatory Ventilation in Pediatric Patients with Acute Respiratory Distress Syndrome in an Intensive Care Unit. Annals of Saudi Medicine, 43, 283-290.
https://doi.org/10.5144/0256-4947.2023.283
[17] Wong, J.J., Liu, S., Dang, H., Anantasit, N., Phan, P.H., Phumeetham, S., et al. (2020) The Impact of High Frequency Oscillatory Ventilation on Mortality in Paediatric Acute Respiratory Distress Syndrome. Critical Care, 24, Article No. 31.
https://doi.org/10.1186/s13054-020-2741-x
[18] Emeriaud, G., López-Fernández, Y.M., Iyer, N.P., Bembea, M.M., Agulnik, A., Barbaro, R.P., et al. (2023) Executive Summary of the Second International Guidelines for the Diagnosis and Management of Pediatric Acute Respiratory Distress Syndrome (Palicc-2). Pediatric Critical Care Medicine, 24, 143-168.
https://doi.org/10.1097/pcc.0000000000003147
[19] Grunwell, J.R., Dahmer, M.K., Sapru, A., Quasney, M.W. and Flori, H. (2023) Pathobiology, Severity, and Risk Stratification of Pediatric Acute Respiratory Distress Syndrome: From the Second Pediatric Acute Lung Injury Consensus Conference. Pediatric Critical Care Medicine, 24, S12-S27.
https://doi.org/10.1097/pcc.0000000000003156
[20] 党红星, 许峰. 儿童急性呼吸窘迫综合征的液体复苏和平衡管理策略[J]. 中国小儿急救医学, 2025(1): 1-7.
[21] Tasaka, S., Ohshimo, S., Takeuchi, M., Yasuda, H., Ichikado, K., Tsushima, K., et al. (2022) ARDS Clinical Practice Guideline 2021. Journal of Intensive Care, 10, Article No. 32.
https://doi.org/10.1186/s40560-022-00615-6
[22] Banani, P. and Atahar, J. (2023) Chapter 24. ARDS in Children: How Is It Different? ISCCM Critical Care Update 2023.
[23] Wang, Q., Liu, Y., Fu, Y., Liu, C., Li, J. and Dang, H. (2022) Analysis of Predictors of Mortality and Clinical Outcomes of Different Subphenotypes for Moderate-to-Severe Pediatric Acute Respiratory Distress Syndrome: A Prospective Single-Center Study. Frontiers in Pediatrics, 10, Article ID: 1019314.
https://doi.org/10.3389/fped.2022.1019314
[24] Himmelstein, R.D. and Balasundaram, P. (2025) High-Frequency Oscillator in the Neonate. StatPearls Publishing.
[25] Okazaki, K. and Kuroda, J. (2024) Comparison of High-Frequency Oscillatory Ventilators. Respiratory Care, 69, 298-305.
https://doi.org/10.4187/respcare.10773
[26] Chattopadhyay, A., Gupta, S., Sankar, J., Kabra, S.K. and Lodha, R. (2020) Outcomes of Severe PARDS on High-Frequency Oscillatory Ventilation—A Single Centre Experience. The Indian Journal of Pediatrics, 87, 185-191.
https://doi.org/10.1007/s12098-019-03134-9
[27] Bateman, S.T., Borasino, S., Asaro, L.A., Cheifetz, I.M., Diane, S., Wypij, D., et al. (2016) Early High-Frequency Oscillatory Ventilation in Pediatric Acute Respiratory Failure. A Propensity Score Analysis. American Journal of Respiratory and Critical Care Medicine, 193, 495-503.
https://doi.org/10.1164/rccm.201507-1381oc
[28] Rowan, C.M., Loomis, A., McArthur, J., Smith, L.S., Gertz, S.J., Fitzgerald, J.C., et al. (2018) High-Frequency Oscillatory Ventilation Use and Severe Pediatric ARDS in the Pediatric Hematopoietic Cell Transplant Recipient. Respiratory Care, 63, 404-411.
https://doi.org/10.4187/respcare.05765
[29] Kumar, A., Joshi, A., Parikh, B., Tiwari, N. and Ramamurthy, R.H. (2023) High-Frequency Oscillatory Ventilation for Respiratory Failure after Congenital Heart Surgery: A Retrospective Analysis. Anaesthesiology Intensive Therapy, 55, 60-67.
https://doi.org/10.5114/ait.2023.126219
[30] 张瑾, 曲东, 任晓旭, 等. 高频振荡通气与常规机械通气治疗儿童急性呼吸窘迫综合征: 单中心前瞻性随机对照研究[J]. 中华实用儿科临床杂志, 2025, 40(1): 44-49.
[31] 张瑾, 曲东, 任晓旭, 等. 高频振荡通气与常规机械通气治疗婴幼儿重症呼吸道合胞病毒肺炎的随机对照研究[J]. 中华危重病急救医学, 2021, 33(4): 455-459.
[32] Prasad, R., Saha, B., Sk, M.H., Sahoo, J.P., Gupta, B.K. and Shaw, S.C. (2024) Noninvasive High-Frequency Oscillation Ventilation as Post-Extubation Respiratory Support in Neonates: Systematic Review and Meta-Analysis. PLOS ONE, 19, e0307903.
https://doi.org/10.1371/journal.pone.0307903
[33] El-Nawawy, A., Moustafa, A., Heshmat, H. and Abouahmed, A. (2017) High Frequency Oscillatory Ventilation versus Conventional Mechanical Ventilation in Pediatric Acute Respiratory Distress Syndrome: A Randomized Controlled Study. The Turkish Journal of Pediatrics, 59, 130-143.
https://doi.org/10.24953/turkjped.2017.02.004
[34] Yehya, N. and Thomas, N.J. (2016) Relevant Outcomes in Pediatric Acute Respiratory Distress Syndrome Studies. Frontiers in Pediatrics, 4, Article No. 51.
https://doi.org/10.3389/fped.2016.00051
[35] Yehya, N., Harhay, M.O., Klein, M.J., Shein, S.L., Piñeres-Olave, B.E., Izquierdo, L., et al. (2020) Predicting Mortality in Children with Pediatric Acute Respiratory Distress Syndrome: A Pediatric Acute Respiratory Distress Syndrome Incidence and Epidemiology Study. Critical Care Medicine, 48, e514-e522.
https://doi.org/10.1097/ccm.0000000000004345
[36] González-Pacheco, N., Belik, J., Santos, M., Tendillo, F. and Sánchez-Luna, M. (2018) New Ventilator Strategies: High-Frequency Oscillatory Ventilation Combined with Volume Guarantee. American Journal of Perinatology, 35, 545-548.
https://doi.org/10.1055/s-0038-1637763
[37] González-Pacheco, N., Sánchez-Luna, M., Ramos-Navarro, C., Navarro-Patiño, N. and de la Blanca, A.R. (2016) Using Very High Frequencies with Very Low Lung Volumes during High-Frequency Oscillatory Ventilation to Protect the Immature Lung. A Pilot Study. Journal of Perinatology, 36, 306-310.
https://doi.org/10.1038/jp.2015.197
[38] Lista, G., Maturana, A. and Moya, F.R. (2017) Achieving and Maintaining Lung Volume in the Preterm Infant: From the First Breath to the Nicu. European Journal of Pediatrics, 176, 1287-1293.
https://doi.org/10.1007/s00431-017-2984-y
[39] Keszler, M., Sakuma, M., Kikuchi, S., Katayama, Y., Takei, A., Ikegami, H., et al. (2016) Effect of Volume Guarantee in Preterm Infants on High-Frequency Oscillatory Ventilation: A Pilot Study. American Journal of Perinatology, 34, 26-30.
https://doi.org/10.1055/s-0036-1584141
[40] Chen, L. and Chen, J. (2019) Effect of High-Frequency Oscillatory Ventilation Combined with Volume Guarantee on Preterm Infants with Hypoxic Respiratory Failure. Journal of the Chinese Medical Association, 82, 861-864.
https://doi.org/10.1097/jcma.0000000000000146
[41] 王鲁春, 包志丹, 马祎喆, 等. 容量保证的高频振荡通气模式对胎龄28-34周早产儿呼吸衰竭疗效的前瞻性随机对照研究[J]. 中国当代儿科杂志, 2023, 25(11): 1101-1106.
[42] Zheng, Y., Xie, W., Liu, J., Wu, H., Xu, N., Huang, S., et al. (2022) Impact of High-Frequency Oscillatory Ventilation Combined with Volume Guarantee on Lung Inflammatory Response in Infants with Acute Respiratory Distress Syndrome after Congenital Heart Surgery: A Randomized Controlled Trial. Journal of Cardiothoracic and Vascular Anesthesia, 36, 2368-2375.
https://doi.org/10.1053/j.jvca.2021.10.012
[43] Zheng, Y., Xie, W., Liu, J., Wu, H., Xu, N., Huang, S., et al. (2021) Application of High‐Frequency Oscillation Ventilation Combined with Volume Guarantee in Infants with Acute Hypoxic Respiratory Failure after Congenital Heart Surgery. Pediatric Pulmonology, 56, 2621-2626.
https://doi.org/10.1002/ppul.25447
[44] Lin, H., Lin, W., Lin, S., Xiu, W. and Zheng, Y. (2022) Application of High-Frequency Oscillation Ventilation Combined with Volume Guarantee in Preterm Infants with Acute Hypoxic Respiratory Failure after Patent Ductus Arteriosus Ligation. The Heart Surgery Forum, 25, E709-E714.
https://doi.org/10.1532/hsf.4825
[45] Perlaza, C.L., Vanegas Potes, V., Aguiño Guerrero, D.E., Cardona Erazo, F.L. and Cruz Mosquera, F.E. (2024) Effects of High-Frequency Volume-Guaranteed Ventilation in Preterm Newborns with Respiratory Distress Syndrome: Exploratory Review. Andes Pediatrica, 95, 449-458.
https://doi.org/10.32641/andespediatr.v95i4.4892
[46] Solís-García, G., Ramos-Navarro, C., González-Pacheco, N. and Sánchez-Luna, M. (2022) Lung Protection Strategy with High-Frequency Oscillatory Ventilation Improves Respiratory Outcomes at Two Years in Preterm Respiratory Distress Syndrome: A before and after, Quality Improvement Study. The Journal of Maternal-Fetal & Neonatal Medicine, 35, 10698-10705.
https://doi.org/10.1080/14767058.2022.2155040
[47] Scollo, S., La Via, L., Pavone, P., Piastra, M., Conti, G. and Minardi, C. (2024) High-Flow Oscillatory Ventilation: A Possible Therapeutic Option for Pediatric Patients with Cardiovascular Diseases. Pediatric Reports, 16, 925-933.
https://doi.org/10.3390/pediatric16040079
[48] de Jager, P., Curley, M.A.Q., Cheifetz, I.M. and Kneyber, M.C.J. (2023) Hemodynamic Effects of a High-Frequency Oscillatory Ventilation Open-Lung Strategy in Critically Ill Children with Acquired or Congenital Cardiac Disease. Pediatric Critical Care Medicine, 24, e272-e281.
https://doi.org/10.1097/pcc.0000000000003211
[49] Li, L., Bai, H., Jiang, Y., et al. (2022) The Role of 2 Modes of Mechanical Ventilation for Respiratory Support in Very Low Birth Weight Preterm Infants with Respiratory Distress Syndrome. Chinese Journal of Obstetrics and Gynecology and Pediatrics, 18, 198-204.
[50] Bergez, L., Jourdain, G. and De Luca, D. (2023) Noise Produced by Neonatal Ventilators inside and outside of the Incubators. Respiratory Care, 68, 1693-1700.
https://doi.org/10.4187/respcare.10989
[51] Almadhoob, A. and Ohlsson, A. (2020) Sound Reduction Management in the Neonatal Intensive Care Unit for Preterm or Very Low Birth Weight Infants. Cochrane Database of Systematic Reviews, 2020, CD010333.
https://doi.org/10.1002/14651858.cd010333.pub3
[52] Liu, Y., Wang, Q., Hu, J., Zhou, F., Liu, C., Li, J., et al. (2022) Characteristics and Risk Factors of Children Requiring Prolonged Mechanical Ventilation vs Non-Prolonged Mechanical Ventilation in the PICU: A Prospective Single-Center Study. Frontiers in Pediatrics, 10, Article ID: 830075.
https://doi.org/10.3389/fped.2022.830075
[53] Chen, R., Liu, Y. and Dang, H. (2024) Definition, Risk Factors, and Outcome Analysis of Prolonged Mechanical Ventilation in Children. Pediatric Pulmonology, 59, 2507-2516.
https://doi.org/10.1002/ppul.27054

Baidu
map