[1] |
Bos, L.D.J. and Ware, L.B. (2022) Acute Respiratory Distress Syndrome: Causes, Pathophysiology, and Phenotypes. The Lancet, 400, 1145-1156. https://doi.org/10.1016/s0140-6736(22)01485-4 |
[2] |
Bellani, G., Laffey, J.G., Pham, T., Fan, E., Brochard, L., Esteban, A., et al. (2016) Epidemiology, Patterns of Care, and Mortality for Patients with Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA, 315, 788-800. https://doi.org/10.1001/jama.2016.0291 |
[3] |
Sinha, P., Singh, S., Hardman, J.G., Bersten, A.D. and Soni, N. (2014) Evaluation of the Physiological Properties of Ventilatory Ratio in a Computational Cardiopulmonary Model and Its Clinical Application in an Acute Respiratory Distress Syndrome Population. British Journal of Anaesthesia, 112, 96-101. https://doi.org/10.1093/bja/aet283 |
[4] |
Sinha, P., Calfee, C.S., Beitler, J.R., Soni, N., Ho, K., Matthay, M.A., et al. (2019) Physiologic Analysis and Clinical Performance of the Ventilatory Ratio in Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 199, 333-341. https://doi.org/10.1164/rccm.201804-0692oc |
[5] |
Sinha, P., Fauvel, N.J., Singh, S. and Soni, N. (2009) Ventilatory Ratio: A Simple Bedside Measure of Ventilation. British Journal of Anaesthesia, 102, 692-697. https://doi.org/10.1093/bja/aep054 |
[6] |
Caviedes, I., Soto, R. and Torres, A. (2021) Pulmonary Angiopathy in Severe COVID-19: Physiological Conclusions Derived from Ventilatory Ratio? American Journal of Respiratory and Critical Care Medicine, 203, 258-259. https://doi.org/10.1164/rccm.202009-3446le |
[7] |
Sinha, P., Sanders, R.D., Soni, N., Vukoja, M.K. and Gajic, O. (2013) Acute Respiratory Distress Syndrome: The Prognostic Value of Ventilatory Ratio—A Simple Bedside Tool to Monitor Ventilatory Efficiency. American Journal of Respiratory and Critical Care Medicine, 187, 1150-1153. https://doi.org/10.1164/rccm.201211-2037le |
[8] |
Sinha, P., Fauvel, N.J., Singh, P. and Soni, N. (2013) Analysis of Ventilatory Ratio as a Novel Method to Monitor Ventilatory Adequacy at the Bedside. Critical Care, 17, Article No. R34. https://doi.org/10.1186/cc12541 |
[9] |
Zheng, M. (2023) Dead Space Ventilation-Related Indices: Bedside Tools to Evaluate the Ventilation and Perfusion Relationship in Patients with Acute Respiratory Distress Syndrome. Critical Care, 27, Article No. 46. https://doi.org/10.1186/s13054-023-04338-4 |
[10] |
Maj, R., Palermo, P., Gattarello, S., Brusatori, S., D’Albo, R., Zinnato, C., et al. (2023) Ventilatory Ratio, Dead Space, and Venous Admixture in Patients with Acute Respiratory Distress Syndrome. British Journal of Anaesthesia, 130, 360-367. https://doi.org/10.1016/j.bja.2022.10.035 |
[11] |
Morales-Quinteros, L., Schultz, M.J., Bringué, J., Calfee, C.S., Camprubí, M., Cremer, O.L., et al. (2019) Estimated Dead Space Fraction and the Ventilatory Ratio Are Associated with Mortality in Early Ards. Annals of Intensive Care, 9, Article No. 128. https://doi.org/10.1186/s13613-019-0601-0 |
[12] |
Pintado, M., de Pablo, R., Trascasa, M., Milicua, J., Rogero, S., Daguerre, M., et al. (2013) Individualized PEEP Setting in Subjects with ARDS: A Randomized Controlled Pilot Study. Respiratory Care, 58, 1416-1423. https://doi.org/10.4187/respcare.02068 |
[13] |
Chen, L., Del Sorbo, L., Grieco, D.L., Shklar, O., Junhasavasdikul, D., Telias, I., et al. (2018) Airway Closure in Acute Respiratory Distress Syndrome: An Underestimated and Misinterpreted Phenomenon. American Journal of Respiratory and Critical Care Medicine, 197, 132-136. https://doi.org/10.1164/rccm.201702-0388le |
[14] |
Grieco, D.L., Bongiovanni, F., Chen, L., Menga, L.S., Cutuli, S.L., Pintaudi, G., et al. (2020) Respiratory Physiology of Covid-19-Induced Respiratory Failure Compared to ARDS of Other Etiologies. Critical Care, 24, Article No. 529. https://doi.org/10.1186/s13054-020-03253-2 |
[15] |
Jayasimhan, D., Chieng, J., Kolbe, J. and Sidebotham, D.A. (2023) Dead-Space Ventilation Indices and Mortality in Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis. Critical Care Medicine, 51, 1363-1372. https://doi.org/10.1097/ccm.0000000000005921 |
[16] |
Monteiro, A.C.C., Vangala, S., Wick, K.D., Delucchi, K.L., Siegel, E.R., Thompson, B.T., et al. (2022) The Prognostic Value of Early Measures of the Ventilatory Ratio in the ARDS ROSE Trial. Critical Care, 26, Article No. 297. https://doi.org/10.1186/s13054-022-04179-7 |
[17] |
Wang, Z., Xia, F., Dai, H., Chen, H., Xie, J., Qiu, H., et al. (2022) Early Decrease of Ventilatory Ratio after Prone Position Ventilation May Predict Successful Weaning in Patients with Acute Respiratory Distress Syndrome: A Retrospective Cohort Study. Frontiers in Medicine, 9, Article 1057260. https://doi.org/10.3389/fmed.2022.1057260 |
[18] |
Tisminetzky, M., Ferreyro, B.L., Frutos-Vivar, F., Esteban, A., Ríos, F., Thille, A.W., et al. (2022) Decline in Ventilatory Ratio as a Predictor of Mortality in Adults with ARDS Receiving Prone Positioning. Respiratory Care, 67, 1067-1074. |
[19] |
Papoutsi, E., Giannakoulis, V.G., Routsi, C., Kotanidou, A. and Siempos, I.I. (2023) Association between Ventilatory Ratio and Mortality Persists in Patients with ARDS Requiring Prolonged Mechanical Ventilation. Intensive Care Medicine, 49, 876-877. https://doi.org/10.1007/s00134-023-07107-7 |
[20] |
Kaku, N., Nakagama, Y., Shirano, M., Shinomiya, S., Shimazu, K., Yamazaki, K., et al. (2021) Longitudinal Ventilatory Ratio Monitoring for COVID-19: Its Potential in Predicting Severity and Assessing Treatment Response. Critical Care, 25, Article No. 366. https://doi.org/10.1186/s13054-021-03768-2 |
[21] |
Matthay, M.A., Arabi, Y., Arroliga, A.C., Bernard, G., Bersten, A.D., Brochard, L.J., et al. (2024) A New Global Definition of Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 209, 37-47. https://doi.org/10.1164/rccm.202303-0558ws |
[22] |
See, K.C., Estaras, M.T. and Taculod, J.M. (2021) Identification of Focal ARDS Using Ventilatory Ratio. Critical Care, 25, Article No. 371. https://doi.org/10.1186/s13054-021-03796-y |
[23] |
Bos, L.D.J., Sjoding, M., Sinha, P., Bhavani, S.V., Lyons, P.G., Bewley, A.F., et al. (2021) Longitudinal Respiratory Subphenotypes in Patients with COVID-19-Related Acute Respiratory Distress Syndrome: Results from Three Observational Cohorts. The Lancet Respiratory Medicine, 9, 1377-1386. |
[24] |
Guérin, C., Reignier, J., Richard, J., Beuret, P., Gacouin, A., Boulain, T., et al. (2013) Prone Positioning in Severe Acute Respiratory Distress Syndrome. New England Journal of Medicine, 368, 2159-2168. https://doi.org/10.1056/nejmoa1214103 |
[25] |
Scholten, E.L., Beitler, J.R., Prisk, G.K. and Malhotra, A. (2017) Treatment of ARDS with Prone Positioning. Chest, 151, 215-224. https://doi.org/10.1016/j.chest.2016.06.032 |
[26] |
Gattinoni, L., Pesenti, A. and Carlesso, E. (2013) Body Position Changes Redistribute Lung Computed-Tomographic Density in Patients with Acute Respiratory Failure: Impact and Clinical Fallout through the Following 20 Years. Intensive Care Medicine, 39, 1909-1915. https://doi.org/10.1007/s00134-013-3066-x |
[27] |
Proklou, A., Papadakis, E., Kondili, E., Tserlikakis, N., Karageorgos, V., Konstantinou, I., et al. (2021) Ventilatory Ratio Threshold for Unassisted Breathing: A Retrospective Exploratory Analysis. Respiratory Care, 66, 1699-1703. https://doi.org/10.4187/respcare.09208 |
[28] |
Attaway, A.H., Scheraga, R.G., Bhimraj, A., Biehl, M. and Hatipoğlu, U. (2021) Severe Covid-19 Pneumonia: Pathogenesis and Clinical Management. BMJ, 372, n436. https://doi.org/10.1136/bmj.n436 |
[29] |
Villalba, J.A., Hilburn, C.F., Garlin, M.A., Elliott, G.A., Li, Y., Kunitoki, K., et al. (2022) Vasculopathy and Increased Vascular Congestion in Fatal COVID-19 and Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 206, 857-873. https://doi.org/10.1164/rccm.202109-2150oc |
[30] |
Diehl, J., Peron, N., Chocron, R., Debuc, B., Guerot, E., Hauw-Berlemont, C., et al. (2020) Respiratory Mechanics and Gas Exchanges in the Early Course of COVID-19 ARDS: A Hypothesis-Generating Study. Annals of Intensive Care, 10, Article No. 95. https://doi.org/10.1186/s13613-020-00716-1 |
[31] |
Beloncle, F., Studer, A., Seegers, V., Richard, J., Desprez, C., Fage, N., et al. (2021) Longitudinal Changes in Compliance, Oxygenation and Ventilatory Ratio in COVID-19 versus Non-Covid-19 Pulmonary Acute Respiratory Distress Syndrome. Critical Care, 25, Article No. 248. https://doi.org/10.1186/s13054-021-03665-8 |
[32] |
Torres, A., Motos, A., Riera, J., Fernández-Barat, L., Ceccato, A., Pérez-Arnal, R., et al. (2021) The Evolution of the Ventilatory Ratio Is a Prognostic Factor in Mechanically Ventilated COVID-19 ARDS Patients. Critical Care, 25, Article No. 331. |
[33] |
Liu, X., Liu, X., Xu, Y., Xu, Z., Huang, Y., Chen, S., et al. (2020) Ventilatory Ratio in Hypercapnic Mechanically Ventilated Patients with Covid-19-Associated Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 201, 1297-1299. https://doi.org/10.1164/rccm.202002-0373le |
[34] |
Bhalla, A.K., Dong, J., Klein, M.J., Khemani, R.G. and Newth, C.J. (2021) The Association between Ventilatory Ratio and Mortality in Children and Young Adults. Respiratory Care, 66, 205-212. https://doi.org/10.4187/respcare.07937 |