[1] |
Retamozo, S., Akasbi, M., Brito-Zerón, P., et al. (2012) Anti-Ro52 Antibody Testing Influences the Classification and Clinical Characterisation of Primary Sjgren’s Syndrome. Clinical & Experimental Rheumatology, 30, 686-692. |
[2] |
刘荷江, 常娥, 郭敏. 自身抗体检测诊断原发性干燥综合征的临床应用价值分析[J]. 内科, 2018, 13(3): 329-332. |
[3] |
Hernández-Molina, G., Leal-Alegre, G. and Michel-Peregrina, M. (2011) The Meaning of Anti-Ro and Anti-La Antibodies in Primary Sjögren’s Syndrome. Autoimmunity Reviews, 10, 123-125. https://doi.org/10.1016/j.autrev.2010.09.001 |
[4] |
Routsias, J.G. and Tzioufas, A.G. (2010) Autoimmune Response and Target Autoantigens in Sjögren’s Syndrome. European Journal of Clinical Investigation, 40, 1026-1036. https://doi.org/10.1111/j.1365-2362.2010.02342.x |
[5] |
He, J., Fang, W. and Li, Z.G. (2008) [The Application of Combined Detection of Autoantibodies in Primary Sjögren’s Syndrome]. Chinese Journal of Internal Medicine, 47, 46-51. |
[6] |
Bournia, V. and Vlachoyiannopoulos, P.G. (2012) Subgroups of Sjögren Syndrome Patients According to Serological Profiles. Journal of Autoimmunity, 39, 15-26. https://doi.org/10.1016/j.jaut.2012.03.001 |
[7] |
Mofors, J., Holmqvist, M., Westermark, L., Björk, A., Kvarnström, M., Forsblad‐d’Elia, H., et al. (2019) Concomitant Ro/SSA and La/SSB Antibodies Are Biomarkers for the Risk of Venous Thromboembolism and Cerebral Infarction in Primary Sjögren’s Syndrome. Journal of Internal Medicine, 286, 458-468. https://doi.org/10.1111/joim.12941 |
[8] |
Mofors, J., Björk, A., Smedby, K.E., Kvarnström, M., Forsblad-d’Elia, H., Magnusson-Bucher, S., et al. (2020) Increased Risk of Multiple Myeloma in Primary Sjögren’s Syndrome Is Limited to Individuals with Ro/SSA and La/SSB Autoantibodies. Annals of the Rheumatic Diseases, 79, 307-308. https://doi.org/10.1136/annrheumdis-2019-216287 |
[9] |
Acar-Denizli, N., Horváth, I.F., Mandl, T., et al. (2020) Systemic Phenotype Related to Primary Sjgren’s Syndrome in 279 Patients Carrying Isolated Anti-La/SSB Antibodies. Clinical and Experimental Rheumatology, 126, 85-94. |
[10] |
Cafaro, G., Perricone, C., Baldini, C., et al. (2020) Significance of Anti-La/SSB Antibodies in Primary Sjögren’s Syndrome Patients with Combined Positivity for Anti-Ro/SSA and Salivary Gland Biopsy. Clinical and Experimental Rheumatology, 126, 53-56. |
[11] |
Quartuccio, L., Baldini, C., Bartoloni, E., Priori, R., Carubbi, F., Corazza, L., et al. (2015) Anti-SSA/SSB-Negative Sjögren’s Syndrome Shows a Lower Prevalence of Lymphoproliferative Manifestations, and a Lower Risk of Lymphoma Evolution. Autoimmunity Reviews, 14, 1019-1022. https://doi.org/10.1016/j.autrev.2015.07.002 |
[12] |
Maślińska, M., Mańczak, M., Wojciechowska, B. and Kwiatkowska, B. (2017) The Prevalence of ANA Antibodies, Anticentromere Antibodies, and Anti-Cyclic Citrullinated Peptide Antibodies in Patients with Primary Sjögren’s Syndrome Compared to Patients with Dryness Symptoms without Primary Sjögren’s Syndrome Confirmation. Rheumatology, 55, 113-119. https://doi.org/10.5114/reum.2017.68909 |
[13] |
Wainwright, B., Bhan, R., Trad, C., Cohen, R., Saxena, A., Buyon, J., et al. (2020) Autoimmune-Mediated Congenital Heart Block. Best Practice & Research Clinical Obstetrics & Gynaecology, 64, 41-51. https://doi.org/10.1016/j.bpobgyn.2019.09.001 |
[14] |
Ambrosi, A., Dzikaite, V., Park, J., Strandberg, L., Kuchroo, V.K., Herlenius, E., et al. (2012) Anti-Ro52 Monoclonal Antibodies Specific for Amino Acid 200-239, but Not Other Ro52 Epitopes, Induce Congenital Heart Block in a Rat Model. Annals of the Rheumatic Diseases, 71, 448-454. https://doi.org/10.1136/annrheumdis-2011-200414 |
[15] |
Llanos, C., Friedman, D.M., Saxena, A., Izmirly, P.M., Tseng, C., Dische, R., et al. (2012) Anatomical and Pathological Findings in Hearts from Fetuses and Infants with Cardiac Manifestations of Neonatal Lupus. Rheumatology, 51, 1086-1092. https://doi.org/10.1093/rheumatology/ker515 |
[16] |
Cuneo, B.F., Strasburger, J.F., Niksch, A., Ovadia, M. and Wakai, R.T. (2009) An Expanded Phenotype of Maternal SSA/SSB Antibody-Associated Fetal Cardiac Disease. The Journal of Maternal-Fetal & Neonatal Medicine, 22, 233-238. https://doi.org/10.1080/14767050802488220 |
[17] |
Lin, L., Hang, H., Zhang, J., Lu, J., Chen, D. and Shi, J. (2022) Clinical Significance of Anti-SSA/Ro Antibody in Neuromyelitis Optica Spectrum Disorders. Multiple Sclerosis and Related Disorders, 58, Article ID: 103494. https://doi.org/10.1016/j.msard.2022.103494 |
[18] |
Estiasari, R., Matsushita, T., Masaki, K., Akiyama, T., Yonekawa, T., Isobe, N., et al. (2012) Comparison of Clinical, Immunological and Neuroimaging Features between Anti-Aquaporin-4 Antibody-Positive and Antibody-Negative Sjögren’s Syndrome Patients with Central Nervous System Manifestations. Multiple Sclerosis Journal, 18, 807-816. https://doi.org/10.1177/1352458511431727 |
[19] |
Tani, J., Liao, H., Hsu, H., Chen, L., Chang, T., Shin‐Yi Lin, C., et al. (2020) Immune‐Mediated Axonal Dysfunction in Seropositive and Seronegative Primary Sjögren’s Syndrome. Annals of Clinical and Translational Neurology, 7, 819-828. https://doi.org/10.1002/acn3.51053 |
[20] |
Lisi, S., Sisto, M., Lofrumento, D.D. and D’Amore, M. (2012) Sjögren’s Syndrome Autoantibodies Provoke Changes in Gene Expression Profiles of Inflammatory Cytokines Triggering a Pathway Involving TACE/NF-κB. Laboratory Investigation, 92, 615-624. https://doi.org/10.1038/labinvest.2011.190 |
[21] |
Ben-Chetrit, E., Chan, E.K., Sullivan, K.F. and Tan, E.M. (1988) A 52-Kd Protein Is a Novel Component of the SSA/Ro Antigenic Particle. The Journal of experimental medicine, 167, 1560-1571. https://doi.org/10.1084/jem.167.5.1560 |
[22] |
Peene, I., Meheus, L., De Keyser, S., Humbel, R., Veys, E.M. and De Keyser, F. (2002) Anti-Ro52 Reactivity Is an Independent and Additional Serum Marker in Connective Tissue Disease. Annals of the Rheumatic Diseases, 61, 929-933. https://doi.org/10.1136/ard.61.10.929 |
[23] |
Brauner, S., Ivanchenko, M., Thorlacius, G.E., Ambrosi, A. and Wahren-Herlenius, M. (2018) The Sjögren’s Syndrome-Associated Autoantigen Ro52/TRIM21 Modulates Follicular B Cell Homeostasis and Immunoglobulin Production. Clinical and Experimental Immunology, 194, 315-326. https://doi.org/10.1111/cei.13211 |
[24] |
Espinosa, A., Zhou, W., Ek, M., Hedlund, M., Brauner, S., Popovic, K., et al. (2006) The Sjögren’s Syndrome-Associated Autoantigen Ro52 Is an E3 Ligase That Regulates Proliferation and Cell Death. The Journal of Immunology, 176, 6277-6285. https://doi.org/10.4049/jimmunol.176.10.6277 |
[25] |
Oke, V., Vassilaki, I., Espinosa, A., Strandberg, L., Kuchroo, V.K., Nyberg, F., et al. (2009) High Ro52 Expression in Spontaneous and UV-Induced Cutaneous Inflammation. Journal of Investigative Dermatology, 129, 2000-2010. https://doi.org/10.1038/jid.2008.453 |
[26] |
Chan, E.K.L. (2022) Anti-Ro52 Autoantibody Is Common in Systemic Autoimmune Rheumatic Diseases and Correlating with Worse Outcome When Associated with Interstitial Lung Disease in Systemic Sclerosis and Autoimmune Myositis. Clinical Reviews in Allergy & Immunology, 63, 178-193. https://doi.org/10.1007/s12016-021-08911-z |
[27] |
Decker, P., Moulinet, T., Pontille, F., Cravat, M., De Carvalho Bittencourt, M. and Jaussaud, R. (2022) An Updated Review of Anti-Ro52 (TRIM21) Antibodies Impact in Connective Tissue Diseases Clinical Management. Autoimmunity Reviews, 21, Article ID: 103013. https://doi.org/10.1016/j.autrev.2021.103013 |
[28] |
Buvry, C., Cassagnes, L., Tekath, M., Artigues, M., Pereira, B., Rieu, V., et al. (2020) Anti-Ro52 Antibodies Are a Risk Factor for Interstitial Lung Disease in Primary Sjögren Syndrome. Respiratory Medicine, 163, Article ID: 105895. https://doi.org/10.1016/j.rmed.2020.105895 |
[29] |
Lin, W., Xin, Z., Zhang, J., Liu, N., Ren, X., Liu, M., et al. (2022) Interstitial Lung Disease in Primary Sjögren’s Syndrome. BMC Pulmonary Medicine, 22, Article No. 73. https://doi.org/10.1186/s12890-022-01868-5 |
[30] |
Palm, O., Garen, T., Berge Enger, T., Jensen, J.L., Lund, M., Aalokken, T.M., et al. (2012) Clinical Pulmonary Involvement in Primary Sjögren’s Syndrome: Prevalence, Quality of Life and Mortality—A Retrospective Study Based on Registry Data. Rheumatology, 52, 173-179. https://doi.org/10.1093/rheumatology/kes311 |
[31] |
Tzioufas, A.G., Wassmuth, R., Dafni, U.G., Guialis, A., Haga, H., Isenberg, D.A., et al. (2002) Clinical, Immunological, and Immunogenetic Aspects of Autoantibody Production against Ro/SSA, La/SSB and Their Linear Epitopes in Primary Sjögren’s Syndrome (PSS): A European Multicentre Study. Annals of the Rheumatic Diseases, 61, 398-404. https://doi.org/10.1136/ard.61.5.398 |
[32] |
Li, B. (2015) Autoantibodies in Chinese Patients with Chronic Hepatitis B: Prevalence and Clinical Associations. World Journal of Gastroenterology, 21, 283-291. https://doi.org/10.3748/wjg.v21.i1.283 |
[33] |
Jordà, F.D., Ginestar, J.F., Balén, M.B., Cortés, J.O., Hariri, A.B., Ñíguez, J.A.R., et al. (2003) Hepatitis autoinmune y anticuerpos anti-Ro positivos. ¿Alguna relación? Gastroenterología y Hepatología, 26, 475-479. https://doi.org/10.1016/s0210-5705(03)70397-5 |
[34] |
Tan, E.M., Rodnan, G.P., Garcia, I., Moroi, Y., Fritzler, M.J. and Peebles, C. (1980) Diversity of Antinuclear Antibodies in Progressive Systemic Sclerosis. Arthritis & Rheumatism, 23, 617-625. https://doi.org/10.1002/art.1780230602 |
[35] |
Baer, A.N., Medrano, L., McAdams‐DeMarco, M. and Gniadek, T.J. (2016) Association of Anticentromere Antibodies with More Severe Exocrine Glandular Dysfunction in Sjögren’s Syndrome: Analysis of the Sjögren’s International Collaborative Clinical Alliance Cohort. Arthritis Care & Research, 68, 1554-1559. https://doi.org/10.1002/acr.22859 |
[36] |
Nakamura, H., Kawakami, A., Hayashi, T., Iwamoto, N., Okada, A., Tamai, M., et al. (2010) Anti-Centromere Antibody-Seropositive Sjögren’s Syndrome Differs from Conventional Subgroup in Clinical and Pathological Study. BMC Musculoskeletal Disorders, 11, Article No. 140. https://doi.org/10.1186/1471-2474-11-140 |
[37] |
Gulati, D., Kushner, I., File, E. and Magrey, M. (2010) Primary Sjögren’s Syndrome with Anticentromere Antibodies—A Clinically Distinct Subset. Clinical Rheumatology, 29, 789-791. https://doi.org/10.1007/s10067-009-1359-9 |
[38] |
Sumida, T., Iizuka, M., Asashima, H., Tsuboi, H. and Matsumoto, I. (2012) Pathogenic Role of Anti-M3 Muscarinic Acetylcholine Receptor Immune Response in Sjögren’s Syndrome. La Presse Médicale, 41, e461-e466. https://doi.org/10.1016/j.lpm.2012.05.019 |
[39] |
Iizuka, M., Wakamatsu, E., Tsuboi, H., Nakamura, Y., Hayashi, T., Matsui, M., et al. (2010) Pathogenic Role of Immune Response to M3 Muscarinic Acetylcholine Receptor in Sjögren’s Syndrome-Like Sialoadenitis. Journal of Autoimmunity, 35, 383-389. https://doi.org/10.1016/j.jaut.2010.08.004 |
[40] |
Jayakanthan, K., Ramya, J., Mandal, S.K., Sandhya, P., Gowri, M. and Danda, D. (2016) Younger Patients with Primary Sjögren’s Syndrome Are More Likely to Have Salivary Igg Anti-Muscarinic Acetylcholine Receptor Type 3 Antibodies. Clinical Rheumatology, 35, 657-662. https://doi.org/10.1007/s10067-016-3186-0 |
[41] |
He, J., Guo, J., Ding, Y., Li, Y., Pan, S., Liu, Y., et al. (2011) Diagnostic Significance of Measuring Antibodies to Cyclic Type 3 Muscarinic Acetylcholine Receptor Peptides in Primary Sjögren’s Syndrome. Rheumatology, 50, 879-884. https://doi.org/10.1093/rheumatology/keq420 |
[42] |
Kovács, L., Marczinovits, I., György, A., Tóth, G.K., Dorgai, L., Pál, J., et al. (2005) Clinical Associations of Autoantibodies to Human Muscarinic Acetylcholine Receptor 3213-228 in Primary Sjögren’s Syndrome. Rheumatology, 44, 1021-1025. https://doi.org/10.1093/rheumatology/keh672 |
[43] |
Magouliotis, D.E., Tasiopoulou, V.S., Svokos, A.A. and Svokos, K.A. (2020) Aquaporins in Health and Disease. Advances in Clinical Chemistry, 98, 149-171. https://doi.org/10.1016/bs.acc.2020.02.005 |
[44] |
Pust, A., Kylies, D., Hube-Magg, C., Kluth, M., Minner, S., Koop, C., et al. (2016) Aquaporin 5 Expression Is Frequent in Prostate Cancer and Shows a Dichotomous Correlation with Tumor Phenotype and PSA Recurrence. Human Pathology, 48, 102-110. https://doi.org/10.1016/j.humpath.2015.09.026 |
[45] |
Alam, J., Koh, J.H., Kim, N., Kwok, S., Park, S., Song, Y.W., et al. (2016) Detection of Autoantibodies against Aquaporin-5 in the Sera of Patients with Primary Sjögren’s Syndrome. Immunologic Research, 64, 848-856. https://doi.org/10.1007/s12026-016-8786-x |
[46] |
罗慧臣, 李萍, 肖卫国. M3R与AQP5在干燥综合征患者唇腺中的表达与意义[J]. 中国免疫学杂志, 2011, 27(1): 79-81, 87. |
[47] |
Ma, T., Song, Y., Gillespie, A., Carlson, E.J., Epstein, C.J. and Verkman, A.S. (1999) Defective Secretion of Saliva in Transgenic Mice Lacking Aquaporin-5 Water Channels. Journal of Biological Chemistry, 274, 20071-20074. https://doi.org/10.1074/jbc.274.29.20071 |
[48] |
Soyfoo, M., Konno, A., Bolaky, N., Oak, J., Fruman, D., Nicaise, C., et al. (2012) Link between Inflammation and Aquaporin‐5 Distribution in Submandibular Gland in Sjögren’s Syndrome? Oral Diseases, 18, 568-574. https://doi.org/10.1111/j.1601-0825.2012.01909.x |
[49] |
Shen, L., Suresh, L., Lindemann, M., Xuan, J., Kowal, P., Malyavantham, K., et al. (2012) Novel autoantibodies in Sjögren’s syndrome. Clinical Immunology, 145, 251-255. https://doi.org/10.1016/j.clim.2012.09.013 |
[50] |
De Langhe, E., Bossuyt, X., Shen, L., Malyavantham, K., Ambrus, J.L. and Suresh, L. (2017) Evaluation of Autoantibodies in Patients with Primary and Secondary Sjögren’s Syndrome. The Open Rheumatology Journal, 11, 10-15. https://doi.org/10.2174/1874312901711010010 |
[51] |
李子轲. SP1在干燥综合征中的作用的研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2021. |
[52] |
Suresh, L., Malyavantham, K., Shen, L. and Ambrus, J.L. (2015) Investigation of Novel Autoantibodies in Sjögren’s Syndrome Utilizing Sera from the Sjögren’s International Collaborative Clinical Alliance Cohort. BMC Ophthalmology, 15, Article No. 38. https://doi.org/10.1186/s12886-015-0023-1 |
[53] |
Shen, L., Kapsogeorgou, E.K., Yu, M., Suresh, L., Malyavantham, K., Tzioufas, A.G., et al. (2014) Evaluation of Salivary Gland Protein 1 Antibodies in Patients with Primary and Secondary Sjögren’s Syndrome. Clinical Immunology, 155, 42-46. https://doi.org/10.1016/j.clim.2014.08.009 |