[1] |
Wang, Q., Qiu, W., Li, M., Li, N., Li, X., Qin, X., et al. (2022) Multifunctional Hydrogel Platform for Biofilm Scavenging and O2 Generating with Photothermal Effect on Diabetic Chronic Wound Healing. Journal of Colloid and Interface Science, 617, 542-556. https://doi.org/10.1016/j.jcis.2022.03.040 |
[2] |
国蓉, 李肖珏, 陈燕燕. 糖化血红蛋白在糖尿病筛查和诊断中的意义[J]. 海军军医大学学报, 2023, 44(4): 480-485. |
[3] |
Shaw, J.E., Sicree, R.A. and Zimmet, P.Z. (2010) Global Estimates of the Prevalence of Diabetes for 2010 and 2030. Diabetes Research and Clinical Practice, 87, 4-14. https://doi.org/10.1016/j.diabres.2009.10.007 |
[4] |
Dal Canto, E., Ceriello, A., Rydén, L., Ferrini, M., Hansen, T.B., Schnell, O., et al. (2019) Diabetes as a Cardiovascular Risk Factor: An Overview of Global Trends of Macro and Micro Vascular Complications. European Journal of Preventive Cardiology, 26, 25-32. https://doi.org/10.1177/2047487319878371 |
[5] |
Stoekenbroek, R.M., Lokin, J.L.C., Nielen, M.M., Stroes, E.S.G. and Koelemay, M.J.W. (2017) How Common Are Foot Problems among Individuals with Diabetes? Diabetic Foot Ulcers in the Dutch Population. Diabetologia, 60, 1271-1275. https://doi.org/10.1007/s00125-017-4274-7 |
[6] |
Callahan, D., Keeley, J., Alipour, H., DeVirgilio, C., Kaji, A., Plurad, D., et al. (2016) Predictors of Severity in Diabetic Foot Infections. Annals of Vascular Surgery, 33, 103-108. https://doi.org/10.1016/j.avsg.2016.01.003 |
[7] |
Skórkowska-Telichowska, K., Czemplik, M., Kulma, A. and Szopa, J. (2013) The Local Treatment and Available Dressings Designed for Chronic Wounds. Journal of the American Academy of Dermatology, 68, e117-e126. https://doi.org/10.1016/j.jaad.2011.06.028 |
[8] |
李奕璇, 江旭, 秦梓通, 等. 抗炎抗菌水凝胶应用于糖尿病慢性伤口的研究进展与展望[J]. 西安交通大学学报(医学版), 2022, 43(6): 943-951. |
[9] |
Firlar, I., Altunbek, M., McCarthy, C., Ramalingam, M. and Camci-Unal, G. (2022) Functional Hydrogels for Treatment of Chronic Wounds. Gels, 8, Article 127. https://doi.org/10.3390/gels8020127 |
[10] |
Li, Y., Fu, R., Duan, Z., Zhu, C. and Fan, D. (2022) Artificial Nonenzymatic Antioxidant Mxene Nanosheet-Anchored Injectable Hydrogel as a Mild Photothermal-Controlled Oxygen Release Platform for Diabetic Wound Healing. ACS Nano, 16, 7486-7502. https://doi.org/10.1021/acsnano.1c10575 |
[11] |
胡敬龙, 李孟芸, 李丹茜, 等. 功能性水凝胶敷料促进糖尿病创面愈合研究进展[J]. 中国实用内科杂志, 2022, 42(8): 683-687. |
[12] |
Hu, J., Chen, S., Yang, Y., Li, L., Cheng, X., Cheng, Y., et al. (2022) A Smart Hydrogel with Anti‐Biofilm and Anti‐Virulence Activities to Treat pseudomonas Aeruginosa Infections. Advanced Healthcare Materials, 11, Article 2200299. https://doi.org/10.1002/adhm.202200299 |
[13] |
Sun, Z., Song, C., Wang, C., Hu, Y. and Wu, J. (2020) Hydrogel-Based Controlled Drug Delivery for Cancer Treatment: A Review. Molecular Pharmaceutics, 17, 373-391. https://doi.org/10.1021/acs.molpharmaceut.9b01020 |
[14] |
Qi, L., Zhang, C., Wang, B., Yin, J. and Yan, S. (2022) Progress in Hydrogels for Skin Wound Repair. Macromolecular Bioscience, 22, e2100475. https://doi.org/10.1002/mabi.202100475 |
[15] |
Thoniyot, P., Tan, M.J., Karim, A.A., Young, D.J. and Loh, X.J. (2015) Nanoparticle-Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials. Advanced Science, 2, Article 1400010. https://doi.org/10.1002/advs.201400010 |
[16] |
Gupta, K.C., Haider, A., Choi, Y. and Kang, I. (2014) Nanofibrous Scaffolds in Biomedical Applications. Biomaterials Research, 18, Article 5. https://doi.org/10.1186/2055-7124-18-5 |
[17] |
Li, J., Zhang, P., Zhou, M., Liu, C., Huang, Y. and Li, L. (2022) Trauma-Responsive Scaffold Synchronizing Oncolysis Immunization and Inflammation Alleviation for Post-Operative Suppression of Cancer Metastasis. ACS Nano, 16, 6064-6079. https://doi.org/10.1021/acsnano.1c11562 |
[18] |
Liu, Y., Li, C., Feng, Z., Han, B., Yu, D. and Wang, K. (2022) Advances in the Preparation of Nanofiber Dressings by Electrospinning for Promoting Diabetic Wound Healing. Biomolecules, 12, Article 1727. https://doi.org/10.3390/biom12121727 |
[19] |
Yusuf Aliyu, A. and Adeleke, O.A. (2023) Nanofibrous Scaffolds for Diabetic Wound Healing. Pharmaceutics, 15, Article 986. https://doi.org/10.3390/pharmaceutics15030986 |
[20] |
周应娟. 纳米复合物介导功能化水凝胶体系在糖尿病创面再生修复中的应用研究[D]: [博士学位论文]. 重庆: 重庆医科大学, 2024. |
[21] |
Zhao, H., Huang, J., Li, Y., Lv, X., Zhou, H., Wang, H., et al. (2020) ROS-Scavenging Hydrogel to Promote Healing of Bacteria Infected Diabetic Wounds. Biomaterials, 258, Article 120286. https://doi.org/10.1016/j.biomaterials.2020.120286 |
[22] |
Long, L., Liu, W., Hu, C., Yang, L. and Wang, Y. (2022) Construction of Multifunctional Wound Dressings with Their Application in Chronic Wound Treatment. Biomaterials Science, 10, 4058-4076. https://doi.org/10.1039/d2bm00620k |
[23] |
Tong, Z., Dong, L., Zhou, L., Tao, R. and Ni, L. (2010) Nisin Inhibits Dental Caries-Associated Microorganism in Vitro. Peptides, 31, 2003-2008. https://doi.org/10.1016/j.peptides.2010.07.016 |
[24] |
Zhang, J., Zhu, Y., Zhang, Y., Lin, W., Ke, J., Liu, J., et al. (2021) A Balanced Charged Hydrogel with Anti-Biofouling and Antioxidant Properties for Treatment of Irradiation-Induced Skin Injury. Materials Science and Engineering: C, 131, Article 112538. https://doi.org/10.1016/j.msec.2021.112538 |
[25] |
Wang, S., Xiang, J., Sun, Y., Wang, H., Du, X., Cheng, X., et al. (2021) Skin-Inspired Nanofibrillated Cellulose-Reinforced Hydrogels with High Mechanical Strength, Long-Term Antibacterial, and Self-Recovery Ability for Wearable Strain/Pressure Sensors. Carbohydrate Polymers, 261, Article 117894. https://doi.org/10.1016/j.carbpol.2021.117894 |
[26] |
Khaliq, T., Sohail, M., Minhas, M.U., Ahmed Shah, S., Jabeen, N., Khan, S., et al. (2022) Self-Crosslinked Chitosan/κ-Carrageenan-Based Biomimetic Membranes to Combat Diabetic Burn Wound Infections. International Journal of Biological Macromolecules, 197, 157-168. https://doi.org/10.1016/j.ijbiomac.2021.12.100 |
[27] |
Tu, C., Lu, H., Zhou, T., Zhang, W., Deng, L., Cao, W., et al. (2022) Promoting the Healing of Infected Diabetic Wound by an Anti-Bacterial and Nano-Enzyme-Containing Hydrogel with Inflammation-Suppressing, Ros-Scavenging, Oxygen and Nitric Oxide-Generating Properties. Biomaterials, 286, Article 121597. https://doi.org/10.1016/j.biomaterials.2022.121597 |
[28] |
Zhu, Y., Hoshi, R., Chen, S., Yi, J., Duan, C., Galiano, R.D., et al. (2016) Sustained Release of Stromal Cell Derived Factor-1 from an Antioxidant Thermoresponsive Hydrogel Enhances Dermal Wound Healing in Diabetes. Journal of Controlled Release, 238, 114-122. https://doi.org/10.1016/j.jconrel.2016.07.043 |
[29] |
Veith, A.P., Henderson, K., Spencer, A., Sligar, A.D. and Baker, A.B. (2019) Therapeutic Strategies for Enhancing Angiogenesis in Wound Healing. Advanced Drug Delivery Reviews, 146, 97-125. https://doi.org/10.1016/j.addr.2018.09.010 |
[30] |
Wang, G.L., Jiang, B.H., Rue, E.A. and Semenza, G.L. (1995) Hypoxia-Inducible Factor 1 Is a Basic-Helix-Loop-Helix-Pas Heterodimer Regulated by Cellular O2 Tension. Proceedings of the National Academy of Sciences, 92, 5510-5514. https://doi.org/10.1073/pnas.92.12.5510 |
[31] |
Cam, M.E., Ertas, B., Alenezi, H., Hazar-Yavuz, A.N., Cesur, S., Ozcan, G.S., et al. (2021) Accelerated Diabetic Wound Healing by Topical Application of Combination Oral Antidiabetic Agents-Loaded Nanofibrous Scaffolds: An in Vitro and in Vivo Evaluation Study. Materials Science and Engineering: C, 119, Article 111586. https://doi.org/10.1016/j.msec.2020.111586 |
[32] |
Wu, J., Xiao, Z., Chen, A., He, H., He, C., Shuai, X., et al. (2018) Sulfated Zwitterionic Poly(Sulfobetaine Methacrylate) Hydrogels Promote Complete Skin Regeneration. Acta Biomaterialia, 71, 293-305. https://doi.org/10.1016/j.actbio.2018.02.034 |
[33] |
程林飞. 促糖尿病创面愈合的多功能复合水凝胶的制备和研究[D]: [博士学位论文]. 淮南: 安徽理工大学, 2024. |
[34] |
Bustamante-Torres, M., Romero-Fierro, D., Arcentales-Vera, B., Palomino, K., Magaña, H. and Bucio, E. (2021) Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels, 7, Article 182. https://doi.org/10.3390/gels7040182 |
[35] |
Ho, T., Chang, C., Chan, H., Chung, T., Shu, C., Chuang, K., et al. (2022) Hydrogels: Properties and Applications in Biomedicine. Molecules, 27, Article 2902. https://doi.org/10.3390/molecules27092902 |
[36] |
Bordbar-Khiabani, A. and Gasik, M. (2022) Smart Hydrogels for Advanced Drug Delivery Systems. International Journal of Molecular Sciences, 23, Article 3665. https://doi.org/10.3390/ijms23073665 |
[37] |
Haidari, H., Kopecki, Z., Sutton, A.T., Garg, S., Cowin, A.J. and Vasilev, K. (2021) pH-Responsive “Smart” Hydrogel for Controlled Delivery of Silver Nanoparticles to Infected Wounds. Antibiotics, 10, Article 49. https://doi.org/10.3390/antibiotics10010049 |
[38] |
Younis, M.A., Tawfeek, H.M., Abdellatif, A.A.H., Abdel-Aleem, J.A. and Harashima, H. (2022) Clinical Translation of Nanomedicines: Challenges, Opportunities, and Keys. Advanced Drug Delivery Reviews, 181, Article 114083. https://doi.org/10.1016/j.addr.2021.114083 |
[39] |
Kalashnikova, I., Das, S. and Seal, S. (2015) Nanomaterials for Wound Healing: Scope and Advancement. Nanomedicine, 10, 2593-2612. https://doi.org/10.2217/nnm.15.82 |