[1]
|
辜萍, 王宇, 李广海. 碳纳米管的力学性能及碳纳米管复合材料研究[J]. 力学进展, 2002, 32(4): 563-578.
|
[2]
|
晁楠楠, 付饶, 孙昌梅, 等. 碳纳米管增强聚合物复合材料的合成及应用进展[J]. 材料化学前沿, 2017, 5(3): 70-79.
|
[3]
|
朱建平, 冯爱虎, 王希建, 等. 纳米材料在水泥基材料中的应用研究进展[J]. 化工新型材料, 2013, 41(10): 162-164.
|
[4]
|
高建龙. 碳纳米管/聚合物复合材料电学性能研究[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2009.
|
[5]
|
宋九鹏, 肇研, 李学宽, 等. 高韧性低黏度碳纳米管/聚醚酰亚胺/聚醚醚酮纳米复合材料的研究(英文) [J]. 新型炭材料(中英文), 2024, 39(4): 715-728.
|
[6]
|
Zhang, F., Liu, X., Yang, C., Chen, G., Meng, Y., Zhou, H., et al. (2024) Insights into Robust Carbon Nanotubes in Tribology: From Nano to Macro. Materials Today, 74, 203-234. https://doi.org/10.1016/j.mattod.2024.03.001
|
[7]
|
范桃桃, 李晓拓, 肖文凯. 碳纳米管对环氧树脂热导率影响的模拟研究[J]. 武汉大学学报(工学版), 2019, 52(1): 77-82.
|
[8]
|
Quan, G., Wu, Y., Li, W., Li, D., Liu, X., Wang, K., et al. (2024) Construction of Cellulose Nanofiber/Carbon Nanotube Synergistic Network on Carbon Fiber Surface to Enhance Mechanical Properties and Thermal Conductivity of Composites. Composites Science and Technology, 248, Article ID: 110454. https://doi.org/10.1016/j.compscitech.2024.110454
|
[9]
|
Zou, H., Feng, Y., Tang, X., Zhang, X. and Qiu, L. (2024) Interfacial Thermal Conduction Mechanism of Polypyrrole/Carbon Nanotube Composites. Composites Science and Technology, 245, Article ID: 110346. https://doi.org/10.1016/j.compscitech.2023.110346
|
[10]
|
碳纳米管内壁参与化学反应首次被发现[J]. 化学工业与工程, 2011, 28(5): 53.
|
[11]
|
Chavhan, J., Rathod, R., Tandon, V., Umare, S. and Patil, A. (2022) Structural and Physico-Chemical Properties of Electroactive Polyamide/multi-Walled Carbon Nanotubes Nanocomposites. Surfaces and Interfaces, 29, Article ID: 101765. https://doi.org/10.1016/j.surfin.2022.101765
|
[12]
|
Yang, J.C., Zhang, M.K., Zhang, Y.Q., et al. (2024) Density Functional Theory Study of Adsorption and Dissociation of CH2Cl2 on The Surfaces of Transition Metal (Fe, Co, Ni, and Cu)-Doped Carbon Nanotubes. Chemical Physics Impact, 8, Article ID: 100437.
|
[13]
|
Zhao, H., Xi, Z., Wang, Q., Miao, C. and Liu, C. (2024) Investigation on Open Water Adsorption Performance of Multi-Walled Carbon Nanotubes Modified Mil-96(Al). Journal of Solid State Chemistry, 334, Article ID: 124677. https://doi.org/10.1016/j.jssc.2024.124677
|
[14]
|
展咪咪. 原位生长碳纳米管的制备及对砂浆压敏和力学性能的影响[D]: [博士学位论文]. 南京: 东南大学, 2020.
|
[15]
|
丁会敏, 杨光, 唐诗洋, 等. 碳纳米管分散研究现状[J]. 黑龙江科学, 2023, 14(20): 25-28.
|
[16]
|
Zhang, H., Cao, S. and Yilmaz, E. (2023) Carbon Nanotube Reinforced Cementitious Tailings Composites: Links to Mechanical and Microstructural Characteristics. Construction and Building Materials, 365, Article ID: 130123. https://doi.org/10.1016/j.conbuildmat.2022.130123
|
[17]
|
李春, 朱大亮, 梁帅锋, 等. 碳纳米管在水泥基中的分散性研究现状及展望[J]. 山西建筑, 2022, 48(22): 104-109.
|
[18]
|
Kim, Y., Hong, J.S., Moon, S.Y., Hong, J. and Lee, J.U. (2021) Evaluation of Carbon Nanotubes Dispersion in Aqueous Solution with Various Dispersing Agents. Carbon Letters, 31, 1327-1337. https://doi.org/10.1007/s42823-021-00285-8
|
[19]
|
张好强, 吴昱鑫, 张傲, 等. 碳纳米管分散性及功能化表征方法的研究现状[J]. 炭素技术, 2024, 43(2): 1-5, 70.
|
[20]
|
陈星宇. 改性碳纳米管增强水泥基复合材料的力学性能及微观研究[D]: [硕士学位论文]. 郑州: 中原工学院, 2018.
|
[21]
|
戚瑞. 不同直径碳纳米管水泥基材料力学特性及抗冻性能研究[D]: [硕士学位论文]. 西安: 长安大学, 2019.
|
[22]
|
戚瑞, 田威, 王峰, 等. 不同直径碳纳米管对水泥基试样力学性能的影响[J]. 硅酸盐通报, 2019, 38(3): 653-658.
|
[23]
|
李相国, 明添, 刘卓霖, 等. 碳纳米管水泥基复合材料耐久性及力学性能研究[J]. 硅酸盐通报, 2018, 37(5): 1497-1502.
|
[24]
|
Yang, H., Shen, Z., Zhang, M., Wang, Z. and Li, J. (2024) Mechanical Properties and Microstructure of Cement-Based Materials by Different High-Temperature Curing Methods: A Review. Journal of Building Engineering, 96, Article ID: 110464. https://doi.org/10.1016/j.jobe.2024.110464
|
[25]
|
李伟娜, 李晔, 李晶, 等. 碳纳米管改性水泥基复合材料力学性能研究[J]. 混凝土, 2022(8): 97-101.
|
[26]
|
张鹏, 代小兵, 付世东, 等. 纳米粒子和PVA纤维增强水泥基复合材料抗裂性能研究[J]. 硅酸盐通报, 2017, 36(9): 2923-2928, 2934.
|
[27]
|
刘巧玲. 碳纳米管增强水泥基复合材料多尺度性能及机理研究[D]: [博士学位论文]. 南京: 东南大学, 2015.
|
[28]
|
牛荻涛, 何嘉琦, 傅强, 等. 碳纳米管对水泥基材料微观结构及耐久性能的影响[J]. 硅酸盐学报, 2020, 48(5): 705-717.
|
[29]
|
陈念慈, 李若菲, 黄点秋, 等. 碳纳米管对水泥基材料微观结构的影响研究[J]. 当代化工研究, 2024(9): 37-40.
|
[30]
|
施韬, 朱敏, 李泽鑫, 等. 碳纳米管改性水泥基复合材料的研究进展[J]. 复合材料学报, 2018, 35(5): 1033-1049.
|
[31]
|
Li, G., Shi, X., Gao, Y., Ning, J., Chen, W., Wei, X., et al. (2023) Reinforcing Effects of Carbon Nanotubes on Cement-Based Grouting Materials under Dynamic Impact Loading. Construction and Building Materials, 382, Article ID: 131083. https://doi.org/10.1016/j.conbuildmat.2023.131083
|
[32]
|
Ramezani, M., Dehghani, A. and Sherif, M.M. (2022) Carbon Nanotube Reinforced Cementitious Composites: A Comprehensive Review. Construction and Building Materials, 315, Article ID: 125100. https://doi.org/10.1016/j.conbuildmat.2021.125100
|
[33]
|
Bai, Y., Yue, H., Wang, J., Shen, B., Sun, S., Wang, S., et al. (2020) Super-Durable Ultralong Carbon Nanotubes. Science, 369, 1104-1106. https://doi.org/10.1126/science.aay5220
|
[34]
|
Zhang, X., Lei, X., Jia, X., Sun, T., Luo, J., Xu, S., et al. (2024) Carbon Nanotube Fibers with Dynamic Strength up to 14 GPa. Science, 384, 1318-1323. https://doi.org/10.1126/science.adj1082
|
[35]
|
Zhou, E., Xi, J., Guo, Y., Liu, Y., Xu, Z., Peng, L., et al. (2018) Synergistic Effect of Graphene and Carbon Nanotube for High-Performance Electromagnetic Interference Shielding Films. Carbon, 133, 316-322. https://doi.org/10.1016/j.carbon.2018.03.023
|