[1]
|
Battarbee, R.W., Grytnes, J., Thompson, R., Appleby, P.G., Catalan, J., Korhola, A., et al. (2002) Comparing Palaeolimnological and Instrumental Evidence of Climate Change for Remote Mountain Lakes over the Last 200 Years. Journal of Paleolimnology, 28, 161-179. https://doi.org/10.1023/a:1020384204940
|
[2]
|
Moser, K.A., Baron, J.S., Brahney, J., Oleksy, I.A., Saros, J.E., Hundey, E.J., et al. (2019) Mountain Lakes: Eyes on Global Environmental Change. Global and Planetary Change, 178, 77-95. https://doi.org/10.1016/j.gloplacha.2019.04.001
|
[3]
|
Nevalainen, L. and Luoto, T.P. (2012) Faunal (Chironomidae, Cladocera) Responses to Post-Little Ice Age Climate Warming in the High Austrian Alps. Journal of Paleolimnology, 48, 711-724. https://doi.org/10.1007/s10933-012-9640-3
|
[4]
|
Smol, J.P., Wolfe, A.P., Birks, H.J.B., Douglas, M.S.V., Jones, V.J., Korhola, A., et al. (2005) Climate-Driven Regime Shifts in the Biological Communities of Arctic Lakes. Proceedings of the National Academy of Sciences, 102, 4397-4402. https://doi.org/10.1073/pnas.0500245102
|
[5]
|
Immerzeel, W.W., Lutz, A.F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., et al. (2019) Importance and Vulnerability of the World’s Water Towers. Nature, 577, 364-369. https://doi.org/10.1038/s41586-019-1822-y
|
[6]
|
Giambastiani, B.M.S. (2007) Evoluzione Idrologica ed Idrogeologica Della Pineta di San Vitale (Ravenna). Ph.D. Thesis, Bologna University.
|
[7]
|
Zhang, Y., Song, L., Liu, X.J., Li, W.Q., Lü, S.H., Zheng, L.X., et al. (2012) Atmospheric Organic Nitrogen Deposition in China. Atmospheric Environment, 46, 195-204. https://doi.org/10.1016/j.atmosenv.2011.09.080
|
[8]
|
Battarbee, R.W. (2000) Palaeolimnological Approaches to Climate Change, with Special Regard to the Biological Record. Quaternary Science Reviews, 19, 107-124. https://doi.org/10.1016/s0277-3791(99)00057-8
|
[9]
|
Rühland, K.M., Paterson, A.M. and Smol, J.P. (2015) Lake Diatom Responses to Warming: Reviewing the Evidence. Journal of Paleolimnology, 54, 1-35. https://doi.org/10.1007/s10933-015-9837-3
|
[10]
|
Winder, M. and Sommer, U. (2012) Phytoplankton Response to a Changing Climate. Hydrobiologia, 698, 5-16. https://doi.org/10.1007/s10750-012-1149-2
|
[11]
|
Saros, J.E., Stone, J.R., Pederson, G.T., Slemmons, K.E.H., Spanbauer, T., Schliep, A., et al. (2012) Climate‐Induced Changes in Lake Ecosystem Structure Inferred from Coupled Neo‐ and Paleoecological Approaches. Ecology, 93, 2155-2164. https://doi.org/10.1890/11-2218.1
|
[12]
|
Saros, J.E., Clow, D.W., Blett, T. and Wolfe, A.P. (2010) Critical Nitrogen Deposition Loads in High-Elevation Lakes of the Western US Inferred from Paleolimnological Records. Water, Air, & Soil Pollution, 216, 193-202. https://doi.org/10.1007/s11270-010-0526-6
|
[13]
|
Wolfe, A.P., Baron, J.S. and Cornett, R.J. (2001) Anthropogenic Nitrogen Deposition Induces Rapid Ecological Changes in Alpine Lakes of the Colorado Front Range (USA). Journal of Paleolimnology, 25, 1-7. https://doi.org/10.1023/a:1008129509322
|
[14]
|
Elser, J.J., Kyle, M., Steger, L., Nydick, K.R. and Baron, J.S. (2009) Nutrient Availability and Phytoplankton Nutrient Limitation across a Gradient of Atmospheric Nitrogen Deposition. Ecology, 90, 3062-3073. https://doi.org/10.1890/08-1742.1
|
[15]
|
Bergström, A. and Jansson, M. (2006) Atmospheric Nitrogen Deposition Has Caused Nitrogen Enrichment and Eutrophication of Lakes in the Northern Hemisphere. Global Change Biology, 12, 635-643. https://doi.org/10.1111/j.1365-2486.2006.01129.x
|
[16]
|
Hobbs, W.O., Lafrancois, B.M., Stottlemyer, R., Toczydlowski, D., Engstrom, D.R., Edlund, M.B., et al. (2016) Nitrogen Deposition to Lakes in National Parks of the Western Great Lakes Region: Isotopic Signatures, Watershed Retention, and Algal Shifts. Global Biogeochemical Cycles, 30, 514-533. https://doi.org/10.1002/2015gb005228
|
[17]
|
Catalan, J., Pla-Rabés, S., Wolfe, A.P., Smol, J.P., Rühland, K.M., Anderson, N.J., et al. (2013) Global Change Revealed by Palaeolimnological Records from Remote Lakes: A Review. Journal of Paleolimnology, 49, 513-535. https://doi.org/10.1007/s10933-013-9681-2
|
[18]
|
Wischnewski, J., Mackay, A.W., Appleby, P.G., Mischke, S. and Herzschuh, U. (2011) Modest Diatom Responses to Regional Warming on the Southeast Tibetan Plateau during the Last Two Centuries. Journal of Paleolimnology, 46, 215-227. https://doi.org/10.1007/s10933-011-9533-x
|
[19]
|
Wang, Q., Yang, X., Anderson, N.J. and Ji, J. (2015) Diatom Seasonality and Sedimentation in a Subtropical Alpine Lake (Lugu Hu, Yunnan-Sichuan, Southwest China). Arctic, Antarctic, and Alpine Research, 47, 461-472. https://doi.org/10.1657/aaar0014-039
|
[20]
|
Chen, G., Selbie, D.T., Griffiths, K., Sweetman, J.N., Botrel, M., Taranu, Z.E., et al. (2014) Proximity to Ice Fields and Lake Depth as Modulators of Paleoclimate Records: A Regional Study from Southwest Yukon, Canada. Journal of Paleolimnology, 52, 185-200. https://doi.org/10.1007/s10933-014-9787-1
|
[21]
|
He, J., Liu, J., Rühland, K.M., Zhang, J., Chen, Z., Dong, H., et al. (2022) Responses of Lake Diatoms to Rapid 21st Century Warming on the Southeastern Tibetan Plateau. Anthropocene, 39, Article 100345. https://doi.org/10.1016/j.ancene.2022.100345
|
[22]
|
Winder, M., Reuter, J.E. and Schladow, S.G. (2008) Lake Warming Favours Small-Sized Planktonic Diatom Species. Proceedings of the Royal Society B: Biological Sciences, 276, 427-435. https://doi.org/10.1098/rspb.2008.1200
|
[23]
|
Liao, M., Herzschuh, U., Wang, Y., Liu, X., Ni, J. and Li, K. (2020) Lake Diatom Response to Climate Change and Sedimentary Events on the Southeastern Tibetan Plateau during the Last Millennium. Quaternary Science Reviews, 241, Article 106409. https://doi.org/10.1016/j.quascirev.2020.106409
|
[24]
|
Hu, Z., Anderson, N.J., Yang, X. and McGowan, S. (2014) Catchment‐Mediated Atmospheric Nitrogen Deposition Drives Ecological Change in Two Alpine Lakes in SE Tibet. Global Change Biology, 20, 1614-1628. https://doi.org/10.1111/gcb.12435
|
[25]
|
Kang, W., Chen, G., Wang, J., Huang, L., Wang, L., Li, R., et al. (2019) Assessing the Impact of Long-Term Changes in Climate and Atmospheric Deposition on a Shallow Alpine Lake from Southeast Tibet. Science of The Total Environment, 650, 713-724. https://doi.org/10.1016/j.scitotenv.2018.09.066
|
[26]
|
Zhang, C., Kong, X., Xue, B., Zhao, C., Yang, X., Cheng, L., et al. (2023) Synergistic Effects of Climate Warming and Atmospheric Nutrient Deposition on the Alpine Lake Ecosystem in the South-Eastern Tibetan Plateau during the Anthropocene. Frontiers in Ecology and Evolution, 11, Article 1119840. https://doi.org/10.3389/fevo.2023.1119840
|
[27]
|
Kaufman, D.S., Schneider, D.P., McKay, N.P., Ammann, C.M., Bradley, R.S., Briffa, K.R., et al. (2009) Recent Warming Reverses Long-Term Arctic Cooling. Science, 325, 1236-1239. https://doi.org/10.1126/science.1173983
|
[28]
|
Thompson, R., Kamenik, C. and Schmidt, R. (2005) Ultra-Sensitive Alpine Lakes and Climate Change. Journal of Limnology, 64, 139-152. https://doi.org/10.4081/jlimnol.2005.139
|
[29]
|
Holtgrieve, G.W., Schindler, D.E., Hobbs, W.O., Leavitt, P.R., Ward, E.J., Bunting, L., et al. (2011) A Coherent Signature of Anthropogenic Nitrogen Deposition to Remote Watersheds of the Northern Hemisphere. Science, 334, 1545-1548. https://doi.org/10.1126/science.1212267
|
[30]
|
Smol, J.P. and Douglas, M.S. (2007) From Controversy to Consensus: Making the Case for Recent Climate Change in the Arctic Using Lake Sediments. Frontiers in Ecology and the Environment, 5, 466-474. https://doi.org/10.1890/060162
|