Ag基纳米团簇在电催化领域的应用进展
Research Progress of Ag-Based Nanoclusters in Electrocatalytic Applications
DOI: 10.12677/ms.2025.155111, PDF, HTML, XML,   
作者: 孟 荣:武汉工程大学化学与环境工程学院,湖北 武汉
关键词: Ag基纳米团簇电催化挑战与展望Ag-Based Nanoclusters Electrocatalysis Challenges and Prospects
摘要: 金属纳米团簇是一类尺寸介于金属纳米颗粒与金属配合物之间的新型纳米材料,具有结构精确、电子结构独特、活性位点丰富等特点,在催化领域展现出潜在的应用前景。其中,Ag基纳米团簇因其导电性良好、成本相对较低、结构可调控等特点,已应用于电催化领域。本文简要介绍了Ag基纳米团簇在电催化领域的最新研究进展,包括CO2还原、合成氨、氧还原反应、析氢反应以及其他反应,总结影响其催化性能的因素(如金属组成、配体类型等)和相应的催化机理,指出当前研究中存在的挑战,并展望其未来发展方向。
Abstract: Metal nanoclusters are a new class of nanomaterials with sizes between metal nanoparticles and metal complexes. They are characterized by precise structure, unique electronic structure, and abundant active sites, which show potential applications in the field of catalysis. Among them, Ag-based nanoclusters have been applied in the field of electrocatalysis due to their good electrical conductivity, relatively low cost, and tunable structure. In this paper, we briefly introduce the recent research progress of Ag-based nanoclusters in electrocatalysis, including CO2 reduction, ammonia synthesis, oxygen reduction reaction, hydrogen precipitation reaction, and other reactions, summarize the factors affecting their catalytic performance (e.g., metal composition, type of ligand, etc.) and the corresponding catalytic mechanism, point out the challenges in the current research, and look forward to their future development direction.
文章引用:孟荣. Ag基纳米团簇在电催化领域的应用进展[J]. 材料科学, 2025, 15(5): 1058-1072. https://doi.org/10.12677/ms.2025.155111

1. 引言

电催化是一种绿色高效的能源转换方法,在CO2转化、电解水产H2、氧还原等重要反应中具有广泛的应用潜力[1]。然而,传统的贵金属(Au、Pt、Pd等)催化剂因其成本高昂高,限制其大规模用于电催化领域。因此,急需开发成本低、催化性能高的电催化剂。

金属纳米团簇(MNCs)是一种由几个到数百个金属原子和外围的配体组成的一种新型纳米材料,其尺寸大小(一般为0.8 nm~3.0 nm)介于等离子体金属纳米颗粒与金属配合物之间[2]。MNCs具有结构精确、组成明确、比表面积大、电子结构独特、活性位点丰富等特点,可以充当模型催化剂,有助于实现在原子–分子水平上理解催化剂结构与催化性能之间的关系,在催化领域具有潜在的应用前景[3] [4]。其中Ag基纳米团簇(Ag基NCs)因其导电性良好、成本相对较低、结构可调控等特点,已应用于电催化领域。Ag基NCs可按金属组成分为纯Ag NCs、Ag-M NCs (M = Cu、Au、Pt、Pd等)。Ag基NCs的外围配体种类丰富,常见的配体类型可分为有机配体(包括膦、巯基、炔基配体等)和无机配体(H、Cl NO 3 SbF 6 等)两大类[5]。据报道,Ag基NCs的金属组成和配体均可调控其几何结构和电子结构,进而影响其稳定性以及电催化性能。本文简要介绍了Ag基NCs在电催化领域的最新研究进展,总结影响其催化性能的因素以及相应的反应机理,指出当前研究中存在的挑战,并展望其未来发展方向,期望为设计高性能的电催化剂提供思路和理论依据。

2. 关键参数:评估Ag基纳米团簇的电催化性能

目前,评估Ag基NCs电催化性能的参数大多为:过电位、电流密度、法拉第效率、稳定性[6] [7]。此外,电化学活性表面积、Tafel斜率、产率等参数也可以用于评估其电催化性能[7]

2.1. 过电位(η)

η是驱动反应达到相应的电流密度所施加的电位。η越小,表明反应所需的能量越少,催化活性越高。

2.2. 电流密度(j)

j是单位电极面积上通过的电流。j值越大,表明反应速率越快,催化活性越高。

2.3. 法拉第效率(FE)

FE指目标产物消耗的电荷量占总反应消耗电荷量的百分比[8]。FE数值越高,表明该产物选择性越高。

2.4. 稳定性

如果催化剂在长时间内持续进行电化学测试(I-T曲线)中能保持较高的活性(j值)和选择性(FE),说明其具有良好的稳定性。

3. Ag基纳米团簇的电催化应用

迄今为止,Ag基NCs在电催化领域的应用类型包括CO2还原、合成氨、氧还原反应、析氢反应以及其他反应(C-N偶联,选择性加氢反应等),影响其电催化性能的因素主要有Ag基NCs的结构(如金属组成、配体类型等)和催化反应条件(电解电位,电解液的类型和浓度等)。

3.1. 电催化CO2还原反应(ECO2RR)

目前,大量燃烧化石燃料导致严重的能源危机和CO2等温室气体排放问题。ECO2RR通过可再生能源(如太阳能、风能等)产生的电能驱动,将CO2转化为高附加值的液体燃料和化学品,被视为实现碳循环和能源转型的关键途径之一[9]

3.1.1. ECO2RR的机理

ECO2RR生成还原产物(CO、HCOOH等)的电势相近,其反应途径很复杂,难以控制选择性生成相应的产物[6]。但是,ECO2RR生成还原产物均遵循3个基本的反应历程:(1) CO2分子吸附在催化剂表面;(2) 中间产物的质子耦合电子转移步骤;(3) 经历分子重新组合、从催化剂表面解吸,生成还原产物[10] [11]。目前,Ag基NCs在ECO2RR中的产物主要是H2、CO、HCOOH,少数会生成C2产物(C2H4、CH3COOH等)。其中,H2来源于析氢反应(HER)。HER作为ECO2RR的竞争反应,会降低其主要还原产物的选择性[6]

3.1.2. Ag基纳米团簇ECO2RR性能的影响因素

(1) 金属核效应

2022年,唐正华教授团队采用金属交换方法制备具有体心立方(bcc)金属核结构的M15系列团簇。在ECO2RR中,Au7Ag8将CO2转化成CO(FECO > 95%),而含Cu的Ag9Cu6和Au2Ag8Cu5均能生成CO和甲酸,其最大的FEHCOOH值分别为47.0%、28.3%(见图1)。Au7Ag8和Ag9Cu6能有效抑制HER,在测试电位范围内FEH2 < 10%。与之相反,电解电位越负,Au2Ag8Cu5对HER的选择性升高,FEH2最大值为37.0%。密度泛函理论(DFT)计算揭示,去除配体后暴露欠配位的Ag原子和Au原子是CO形成的活性位点,而甲酸的形成与欠配位的Cu原子与Ag原子的协同作用有关;通过质子机制形成CO (CO2 + H+ + e → *COOH;*COOH + H+ + e → CO + H2O);通过氢化物–质子机制形成HCOOH,即CO2和氢化物(H*)反应生成HCOO*,再经过质子化过程转化为HCOOH(见图2) [12] [13]

Figure 1. Structural anatomy (a) FECO (b), FEHCOOH (c), FE of various products (d) of M15 NC [10] [13]

1. M15 NC的结构解析图(a),FECO (b),FEHCOOH (c),各种产物的FE (d) [10] [13]

Figure 2. Reaction pathways of ECO2RR and HER on M15 NC (a, c, e); schematic diagrams of the formation of CO by the proton mechanism (blue region) and the formation of HCOOH by the hydride-proton mechanism (green region) (b, d, f) [13]

2. M15 NC上的ECO2RR和HER的反应路径(a,c,e);通过质子机制形成CO (蓝色区域)和氢化物–质子机制形成HCOOH (绿色区域)的示意图(b,d,f) [13]

(2) 配体效应

2022年,Chen等人发现纯炔基保护的 Ag 32 ( C CAr F ) 24 和巯膦共配的 [ Ag 32 ( DPPE ) 5 ( SR 24 ) ] 2

ECO2RR中的产物均为CO和H2。其中,膦配体和巯基配体通过σ配位模式与Ag原子形成配位键,而炔基配体可通过σ和π两种配位模式与金属原子形成配位键,这会使团簇的电子结构产生差异,进而引

起其ECO2RR性能产生差异。两者相比, Ag 32 ( C CAr F ) 24 可有效抑制HER,FECO高达96.44%。DFT计算表明,催化活性位点是团簇分子脱除1个配体而暴露的出欠配位的Ag原子。两者相比, Ag 32 ( C CAr F ) 24 在形成关键中间体*COOH的能垒更低,催化活性更高[14]

2023年,Yoo等人合成了2种具有相同的金属内核和不同配体保护的Ag25 NC,即亲水性的[Ag25(Capt)18] (Capt = 卡托普利)和疏水性的[Ag25(IPBT)18] (IPBTH = 2-异丙基苯硫酚)。两者相比,[Ag25(IPBT)18]具有更好的ECO2RR性能,即在膜电极(MEA)电解池中,FECO高达90%,jCO高达−240 mA/cm2,并且在120 h内(电压为−3.2 V)保持稳定的ECO2RR性能。原位衰减全反射表面增强红外吸收光谱(ATR-SEIRAS)和DFT计算,表明配体的亲疏水性可以调节团簇与水的相互作用,改变生成反应中间体(*COOH和*CO)的能垒,从而影响团簇在ECO2RR中的催化活性、选择性和稳定性[15]

(3) 电位和阳离子效应

2025年,Chen等人首次从原子尺度全面揭示电位和阳离子效应对全炔基保护的[Ag15 (C≡C – tBu)12]⁺(Ag15) ECO2RR性能的影响。第一性原理模拟和电化学实验结果显示,施加的还原电位越负,Ag15更容易脱除炔基配体,使2个π型Ag-C键和一个σ型Ag-C键断裂,暴露出的Ag原子是催化活性位点;降低施加电位以及在Ag15内引入Na⁺离子均可显著增强*CO2的活化,通过形成Na+−CO2复合物,促进质子转移生成*COOH和*CO,提高ECO2RR的选择性,并抑制HER(见图3);当电解液为0.1 M NaCl时,Ag15展现出最佳的ECO2RR性能,FECO高达96%,jCO在13 h内保持稳定(见图4) [16]

Figure 3. Schematic representation of the removal of alkyne ligands on Ag15 NC and CO2RR at the Ag15 water interface (a), Free energy landscapes of the reaction paths of CO2RR and HER calculated by DFT for different scenarios (b)~(e) [16]

3. Ag15 NC上炔基配体的脱除和Ag15水界面上的CO2RR的示意图(a);DFT计算的不同情形下的CO2RR和HER的反应路径的自由能(b)~(e) [16]

Figure 4. Faraday efficiency (a), partial current density (b), and conversion frequency (c) of Ag15 NC in ECO2RR for the generation of product CO at different potentials and different concentrations of NaCl (cathodic electrolyte); Long-term stability tests of Ag15 NC in ECO2RR at 0.1 M NaCl and −1.3 V (d) [16]

4. 在不同电位和不同浓度NaCl下,Ag15 NC在ECO2RR中生成产物CO的法拉第效率(a),部分电流密度(b),转化频率(c);在0.1M NaCl和−1.3 V条件下,Ag15 NC在ECO2RR中的长期稳定性测试(d) [16]

目前,已报道的Ag基NCs在ECO2RR中的产物大多为CO和H2 (见表1)。未来需要开发更多具有催化性能高和成本低的Ag基NCs,并深入理解产物选择性的调控机制,提高对多碳产物(如C2H4、C2H5OH等)的选择性[6] [10]

Table 1. ECO2RR performance of reported representative Ag-based nanoclusters

1. 已报道的具有代表性的Ag基纳米团簇的ECO2RR性能

团簇

电解液

电池类型a

产物

FE

稳定性

文献

Ti2Ag4

O2H(TC4A)2

0.5 M KHCO3

H-cell

CO

69.87% (−0.9 VRHE)

[17]

Ti8Ag8O2HNa(TC4A)4

(HIdc)6(iPrO)10(DMF)2(H2O)

0.5 M KHCO3

H-cell

CO

92.33% (−0.9 VRHE)

20 h (−0.9 VRHE)

[17]

Sb2Ag4(TC4A)2O

1 M KOH

Flow-cell

CO

94.78% (−1.4 VRHE)

12 h (−1.1 VRHE)

[18]

Sb2Ag11(TC4A)6O

1 M KHCO3

H-cell

CO

81.99% (−1.2 VRHE)

12 h (−1.2 VRHE)

[18]

Ag8Mo2O4H2

(TC4A)2(tBuC≡C)4(OEt)

0.5 M KHCO3

H-cell

CO

16.84% (−0.8 VRHE)

[19]

Ag12(MoO3)2H2

(TC4A)2(tBuC≡C)6

0.5 M KHCO3

H-cell

CO

60.85% (−0.8 VRHE)

3h (−0.8 VRHE)

[19]

ClAg14(C≡C–tBu)₁₂+

1 M KOH

Flow-cell

CO

51% (400 mA/cm2)

30 h (2.35 V)

[20]

Pt1Ag14

(PhS)6((p−OMePh)3P)7

0.5 M KHCO3

H-cell

CO

HCOOH

38.28% (−1.4 VRHE)

10.96% (−1.0 VRHE)

[21]

Pd1Ag14

(PhS)6((p−OMePh)3P)7

0.5 M KHCO3

H-cell

CO

81.44% (−1.3 VRHE)

[21]

[Ag15(C≡C−tBu)12]+

0.5 M KHCO3

H-cell

CO

95% (−0.6 VRHE)

9 h (−0.75 VRHE)

[12]

[Au2Ag8Cu5(C≡C−tBu)12]+

0.1 M KOH

Flow-cell

CO

HCOOH

95.0% (−0.49 VRHE)

28.3% (−0.99 VRHE)

10 h (−0.99 VRHE)

[13]

[Ag9Cu6(C≡C−tBu)12]+

0.1 M KOH

Flow-cell

CO

HCOOH

94.2% (−0.49 VRHE)

47.0% (−1.19 VRHE)

10 h (−1.19 VRHE)

[13]

[Au7Ag8(C≡C−tBu)12]+

0.1 M KOH

Flow-cell

CO

98.1% (−0.49 VRHE)

10 h (−0.49 VRHE)

[13]

[Au7Ag8(TP)6

((p−OMePh)3P)8]NO3

0.5 M KHCO3

H-cell

CO

70% (−0.9 VRHE)

[22]

[Au7Ag8(pMOTP)6

((p−OMePh)3P)8]SbF6

0.5 M KHCO3

H-cell

CO

HCOOH

46.53% (−1.2 VRHE)

23.37% (−1.2 VRHE)

[22]

[Au7Ag8(PET)6

((p−OMePh)3P)6]SbF6

0.5 M KHCO3

H-cell

CO

HCOOH

46.37% (−1.2 VRHE)

23.49% (−1.2 VRHE)

[22]

Ag9Cu6(C≡CFc)12

0.1 M KHCO3

MEA-cell

CO

99.4% (−4.00 V)

200 h (−3.0 V)

[23]

Ag9Cu6(TBA)12

0.1 M KHCO3

MEA-cell

CO

64% (−3.75 V)

[23]

Ag14Cu2

(C≡CArF)14(PPh3)4

1 M KOH

Flow-cell

CO

83.71% (−1.175 VRHE)

10 h (−0.975 VRHE)

[24]

Ag19Cu2

(C≡CArF)12(PPh3)6Cl6

1 M KOH

Flow-cell

CO

95.26% (−1.37 VRHE)

14 h (−0.97 VRHE)

[25]

[Ag15Cu6

(C≡CR)18(DPPE)2]

0.1 M KHCO3

H-cell

CO

91.3% (−0.81 VRHE)

145 h (−3.25 V)

[26]

Ag25(IPBT)18](PPh4)

0.5 M KHCO3

MEA-cell

CO

HCOOH

91.8% (−3.4 V)

8.4% (−3.6 V)

120 h (−3.2 V)

[15]

Ag25(Capt)18](N(C4H9)4)

0.5 M KHCO3

H-cell

CO

66.6% (−0.82 VRHE)

[15]

Ag25(SPhMe2)18

1 M KOH

Flow-cell

CO

90% (−0.6 VRHE)

[27]

Ag12Au13(SEtPh)18

1 M KOH

Flow-cell

CO

92% (−0.2 VRHE)

24 h (200 mA/cm2)

[27]

[AuAg26(S−Adm)18S]

EMIM−BF4/H2O (7:1)

CO

98.4% (−0.97 VRHE)

11 h (−0.97 VRHE)

[28]

Ag32(C≡CAr)24

0.5 M NaHCO3

H-cell

CO

96.44% (−0.8 VRHE)

15 h

[14]

[Ag32(DPPE)5(SR)24]2

0.5 M NaHCO3

H-cell

CO

56.67% (−1.0 VRHE)

15 h

[14]

[Ag8Cu12

(Dppm)4(SAdm)8Cl8]2+

0.5 M KHCO3

H-cell

CO

52.7% (−0.9 VRHE)

[29]

Ag20Cu10

(Dppm)2(SAdm)14Cl8

0.5 M KHCO3

H-cell

CO

70.8% (−0.9 VRHE)

[29]

[Ag17Cu15

(SAdm)13(Dppm)3Cl9]2+

0.5 M KHCO3

H-cell

CO

59.83% (−1.0 VRHE)

[29]

Ag40.63Cu9.37(C7H7OS)32

2M KOH

H-cell

C1 (CO, HCOOH)

C2 (乙烯、乙醇、乙酸)

C1 : 60% (−0.67 VRHE)

C2 : 29.5% (−0.57 VRHE)

[30]

Ag36.14Cu13.86(C7H7OS)32

2M KOH

H-cell

C1 (CO, HCOOH)

C2 (乙烯、乙醇、乙酸)

C1 : 50% (−0.67 VRHE)

C2 : 47.5% (−0.57 VRHE)

14 h (−0.57 VRHE)

[30]

Ag49Mo16H3O53(TC4A)6

(iPrS)18(CH3CN)2(H2O)

0.5 M KHCO3

H-cell

CO

44.75% (−0.8 VRHE)

[31]

[Au8Ag55(Dppp)4

(C6H11S)34](BPh4)2

0.5 M KHCO3

H-cell

CO

66% (−0.8 VRHE)

9 h (−0.8 VRHE)

[32]

[Au8Ag57(Dppp)4

(C6H11S)32Cl2]Cl

0.5 M KHCO3

H-cell

CO

60% (−0.8 VRHE)

[32]

[Au12Ag60(Dppp)6

(C6H11S)31Br9]Br2

0.5 M KHCO3

H-cell

CO

45% (−0.8 VRHE)

[32]

注:a. H-cell = H型电池;Flow-cell = 流动型电解池;MEA-cell = 膜电极电解池;VRHE是相对于标准氢电极(RHE)的电势。

3.2. 电催化合成氨(ESA)

氨(NH3)广泛应用于生产化肥。近年来,NH3具有绿色氢能载体和燃料的潜力,引起了研究者的广泛关注。然而,传统的工业上采用Haber-Bosch工艺合成NH3,存在能耗高、成本高以及排放有害气体等缺点[33]。ESA的反应条件温和,可以利用太阳能、风能等可再生能源产生的电能驱动反应,实现绿色合成NH3 [34]。目前,ESA的方式主要分为氮气还原和硝酸盐还原[35] [36]

3.2.1. 电催化氮气还原(EN2RR)

EN2RR能够在常温常压下将N2转化为NH3,有助于减少对化石燃料的依赖和温室气体排放。其反应路径包括N2吸附、N≡N键断裂和N原子氢化,以及NH3分子的脱附,反应机制可分为解离机制(N≡N键断裂)和关联机制(同时进行N≡N键断裂和N原子氢化) [37] [38]

2022年,朱满洲教授课题将合成的M4Ni2(SR)8系列团簇(M = Au/Ag,SR = 2,4-二甲基苯硫酚),应用于EN2RR。M4Ni2 NCs的晶体结构由连接2个Ni(SR)4单元的M4单元构成。Ag4Ni2的FENH3高达78.97%,NH3的产率可达到23.32 μg·mg1·h−1。Au4Ni2的FENH3高达23.92%,NH3的产率可达到20.77 μg·mg−1·h−1。这归因于Ag4Ni2对N2化学吸附能力更强和反应决速步的能垒更低,表明杂原子掺杂对催化活性有重要影响。电化学诱导的配体部分脱离会导致团簇的电荷重构并出暴露活性位点,进一步提高催化活性[39]

3.2.2. 电催化硝酸盐还原(ENO3RR)

ENO3RR涉及多电子–质子耦合转移过程,可生成N2和NH3两种产物。其反应机制包括间接自发催化还原路径和直接催化还原路径,涉及多种含氮中间体[40]

2023年,唐正华教授课题组将合成的Ag20Cu12 (C≡CArF)24用于ENO3RR,FENH3高达84.6%,优于同为纯炔基保护的Ag32,并且具有良好的催化稳定性。DFT计算揭示该催化反应机理为:NH3形成的有效活性位点是Ag20Cu12脱落一个完整炔分子之后暴露出的Ag-Cu双金属位点。特别是,Cu位点的参与大大促进了 NO 3 的初始捕获,同时也提高了最终产物的选择性[41]

2023年,唐正华教授课题组首次制备[Ag30Pd4 (C≡C−tBu)26](BPh4)2(Ag30Pd4)。Ag30Pd4展现出优异的ENO3RR催化性能,FENH3可高达90%,NH3的产率可达到1.28 mmol·h−1·mg−1 NO 3 的最大去除率为92% (见图5(a)~(b)。Ag30Pd4在5次连续循环测试中表现出优异的稳定性,其FENH3仅略有下降。原位傅立叶变换红外光谱(situ FTIR)和DFT计算结果,阐明Ag位点主要将 NO 3 转化为 NO 2 ,而Pd位点负责将 NO 2 还原成NH3,揭示该催化反应机理是典型的串联催化机制(见图5(c)) [42]

2024年,臧双全教授课题组制备了水溶性的[Ag9(mba)8H8]+(H2mba = 2-巯基苯甲酸)和表面亲水性的超薄Ti3C2 Mxene,以及Ag9/MXene复合材料。在中性条件下进行ENO3RR实验结果显示,Ag9主要催化 NO 3 还原为 NO 2 ,其FENH3最大值仅为18.1%;Ag9/MXene的FENH3高达80.2%,很少生成 NO 2 ;Ag9/MXene展现出良好的稳定性,其jNH3在108 h内没有衰减。通过TEM、XPS、FTIR等表征方法,揭示了Ag9/Mxene在ENO3RR中的反应机理,Ag9有助于将 NO 3 转化为 NO 2 ,Mxene可提高Ag9的稳定性并促进 NO 2 逐步加氢还原为 NH 4 + ,实现串联催化反应过程,提升对NH3的选择性和FE [43]

Figure 5. FENH3 and NH3 yields (a), cycling stability tests (b), and overall mechanism of NH3 formation (c) of Ag30Pd4 in ENO3RR [42]

5. Ag30Pd4在ENO3RR中FENH3和NH3的产率(a),循环稳定性测试(b),以及形成NH3的总体机理(c) [42]

3.3. 氧还原反应(ORR)

燃料电池反应(FCR)由于具有能效高、环境影响小、燃料多样化等优点,被认为是有前途的清洁和高效能源技术[44]。FCR可以直接将储存在H2、甲醇、乙醇和NH3等燃料分子中的化学能转化为电能[45] [46]。ORR作为FCR的阴极反应,可将O2还原为H2O或H2O2。ORR的反应过程复杂,涉及多电子还原步骤,其动力学非常缓慢,是限制FCR性能的关键因素。

2021年,朱满洲教授课题组合成了2个结构相似的M1Ag21 (M=Au/Ag),即Ag22 (dppf)3 (SAdm)12 (BPh4)2(Ag22)和Au1Ag21(dppf)3(SAdm)12(BPh4)2(Au1Ag21)。Ag22和Au1Ag21均具有二十面体的M13金属内核,由3个Ag3(SR)4基元和3个dppf配体保护。将M1Ag21分别负载在活性炭上制成负载型催化剂。两者均在碱性溶液发生2电子还原过程生成H2O2,展现出优异的ORR活性。DFT计算结果表明,团簇的M13金属内核和dppf配体之间的协同效应共同调节团簇的电子结构,并影响其ORR活性[47]

2024年,谢建平教授团队通过共还原法和金属交换法合成一系列的AuxAg25-x(MHA)18(x = 0~25, MHA = 6-巯基己酸),并从原子层面系统研究团簇组成对ORR性能的影响机制。随着AuxAg25-x中Au原子数量的增加,ORR的电子转移数逐渐降低(3.9~2.1),表明主要的氧还原产物从H2O转变为H2O2。DFT计算结果显示,Au25的∆GOOH*最接近理想值4.22 eV,有利于生成H2O2;而团簇中Ag原子的数量越多,其∆GOOH*会逐渐偏离最优值,更倾向于生成H2O (见图6) [48]

Figure 6. Electron transfer numbers (a) (b) and selectivity for H2O2 (c) (d) of AuxAg25-x series clusters in ORR [48]

6. AuxAg25-x系列团簇在ORR中的电子转移数(a) (b)以及对H2O2的选择性(c) (d) [48]

3.4. 析氢反应(HER)

H2具有热值高、燃烧零污染等特点,有望替代化石能源。HER是电催化分解水的阴极反应[49] [50]。电催化分解水被认为是一种有效的能源转换和存储技术,是目前生产高纯H2和O2的常用策略[49] [50]

2023年,朱满洲教授团队将Ag29(BDT)12(TPP)4(BDT=1,3-苯二硫醇)作为母体团簇,经过核合金化(Pt元素掺杂)、配体工程(1,3,5-苯三硫酚替换BDT)和表面活化(引入过渡金属离子)等操作,制备Pt1Ag28-BTT-M (M = Mn, Fe, Co, Ni)催化剂,应用于HER。其中,Pt1Ag28-BTT-Mn(10)催化剂展现出最佳的HER性能(见图7)。DFT计算证明,Pt1Ag28-BTT-Mn (10)催化剂中的Mn位点是HER反应的活性位点,而不是Ag3[51]

Figure 7. Surface activation schematic of Pt1Ag28-BTT NC (a), LSV curves (b) and Tafel slope (c) for Pt1Ag28-BTT-M(50) catalyst, LSV curves (d) for Pt1Ag28-BTT-Mn(X) catalyst, and comparison of overpotentials and current densities for different catalysts (e) [51]

7. Pt1Ag28-BTT NC的表面活化原理图(a),Pt1Ag28-BTT-M(50) 催化剂的LSV曲线(b)和Tafel斜率(c),Pt1Ag28-BTT-Mn(X)催化剂的LSV曲线(d),不同催化剂的过电位和电流密度对比图(e) [51]

3.5. 其他反应

2025年,臧双全教授课题组制备巯膦配体共同保护的Ag14Pd (PTFE)6 (TPP)8 (Ag14Pd)和Ag13Au5 (PTFE)10(DPPP)4(Ag13Au5)。这2个团簇具有二十面体的金属内核(Pd@Ag12核,Au@Au4Ag8内核)和相似的配体。在电催化合成尿素实验中,Ag14Pd更有利于NO3-还原,其尿素的最大FE值为15.8%,尿素产率高达143.3 mg∙h−1∙gcat−1;Ag13Au5更有利于CO2还原,其尿素的最大FE值为9.7%,尿素产率高达82.3 mg∙h−1∙gcat−1。FTIR和DFT计算结果证明,反应中间体*NOH和*COOH的生成分别为 NO 3 还原和CO2还原的决速步;C-N偶联合成尿素的关键中间体为*NH2和*CO;Ag14Pd有利于生成中间体*NH2,而Ag13Au5更有利于生成中间体*NH。这项研究证明异质金属掺杂可有效调节团簇的活性位点的电荷极化,改变电催化C-N偶联合成尿素的效率和选择性[52]

2025年,Zhang等人通过界面工程策略调控Ag25(MHA)18 (MHA=6-巯基己酸)的活性位点,实现高效电催化炔烃选择性半氢化制备烯烃。Ag25(MHA)18对炔烃的转化率高达98%,烯烃的FE值高达85%,在18次循环实验中保持良好的催化活性。通过原位拉曼光谱和FTIR等表征以及DFT计算,揭示Ag25(MHA)18电催化炔烃半加氢反应机理:基于两亲性的MHA配体,实现活性水和炔烃在Ag25表面的局部富集;Ag25因具有负电荷高、曲率高及疏水烷基链等独特的表面特性,可破坏界面水的氢键,提高弱氢键水的比例,并在其非晶态核心上电解生成*H,促进了*H转移至炔烃;Ag25的类蛋白结构层次还能调节末端炔烃采用σ-键合模式吸附到Ag上,有利于烯烃脱附,防止过度氢化为烷烃[53]

4. 总结与展望

当前,Ag基NCs在电催化领域的应用研究工作仍存在以下挑战。一是,部分Ag基NCs在电催化过程中会发生配体脱落、分解或团聚,影响其催化性能;二是,Ag基NCs中的金属原子被表面配体层包裹,暴露出的活性位点较少,限制其催化性能以及对特定产物的选择性;三是,大多数研究通过DFT计算来揭示Ag基NCs的催化反应机理,结合原位表征方法验证催化机理的研究较少;四是,Ag基NCs在ECO2RR中的研究数量较多,在ESA、ORR等反应中的研究数量相对较少。解决上述问题的可行性策略主要有:一是,通过异质金属元素掺杂(即利用不同金属之间的协同效应)和配体工程(即改变配体的类型和数量)来调节Ag基NCs的电子结构、尺寸和组成,使其暴露更多的催化活性位点,以实现更高的电催化性能。二是,将Ag基NCs与其他材料(例如:MOF、碳材料、金属氧化物等)复合制成更稳定的复合催化剂,提高电稳定性,调节电催化性能;三是,将原位表征技术(如:FTIR、Raman、EPR等)和DFT计算结合,共同揭示Ag基NCs的催化反应机理。期望Ag基NCs能够在电催化领域实现更多的重要应用突破(如:开发高催化性能的Ag基NCs,结合多种表征手段揭示催化机制等)。

参考文献

[1] Lee, D. (2020) (Invited) Electrocatalysis by Atomically Precise Metal Nanoclusters. ECS Meeting Abstracts, 1, Article ID: 1701.
https://doi.org/10.1149/ma2020-01391701mtgabs
[2] Jin, R.C. (2015) Atomically Precise Metal Nanoclusters: Stable Sizes and Optical Properties. Nanoscale, 7, 1549-1565.
https://doi.org/10.1039/c4nr05794e
[3] Du, Y., Sheng, H., Astruc, D., et al. (2019) Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chemical Reviews, 120, 526-622.
https://doi.org/10.1021/acs.chemrev.8b00726
[4] Du, X.S. and Jin, R.C. (2019) Atomically Precise Metal Nanoclusters for Catalysis. ACS Nano, 13, 7383-7387.
https://doi.org/10.1021/acsnano.9b04533
[5] Kang, X., Li, Y., Zhu, M.Z., et al. (2020) Atomically Precise Alloy Nanoclusters: Syntheses, Structures, and Properties. Chemical Society Reviews, 49, 6443-6514.
https://doi.org/10.1039/c9cs00633h
[6] Yang, D., Wang, J., Wang, Q., et al. (2022) Electrocatalytic CO2 Reduction over Atomically Precise Metal Nanoclusters Protected by Organic Ligands. ACS Nano, 16, 15681-15704.
https://doi.org/10.1021/acsnano.2c06059
[7] Ma, G., Qin, L., Liu, Y., et al. (2023) A Review of CO2 Reduction Reaction Catalyzed by Atomical-Level Ag Nanomaterials: Atom-Precise Nanoclusters and Atomically Dispersed Catalysts. Surfaces and Interfaces, 36, Article ID: 102555.
https://doi.org/10.1016/j.surfin.2022.102555
[8] Kempler, P.A. and Nielander, A.C. (2023) Reliable Reporting of Faradaic Efficiencies for Electrocatalysis Research. Nature Communications, 14, Article No. 1158.
https://doi.org/10.1038/s41467-023-36880-8
[9] Kou, Z.K., Li, X., Wang, T.T., et al. (2021) Fundamentals, On-Going Advances and Challenges of Electrochemical Carbon Dioxide Reduction. Electrochemical Energy Reviews, 5, 82-111.
https://doi.org/10.1007/s41918-021-00096-5
[10] Chen, L.Y., Wang, L., Shen, Q.L., et al. (2023) All-Alkynyl-Protected Coinage Metal Nanoclusters: From Synthesis to Electrocatalytic CO2 Reduction Applications. Materials Chemistry Frontiers, 7, 1482-1495.
https://doi.org/10.1039/d2qm01282k
[11] Ayyub, M.M. and Rao, C.N.R. (2021) Designing Electrode Materials for the Electrochemical Reduction of Carbon Dioxide. Materials Horizons, 8, 2420-2443.
https://doi.org/10.1039/d1mh00675d
[12] Qin, L.B., Sun, F., Ma, X.S., et al. (2021) Homoleptic Alkynyl‐Protected Ag15 Nanocluster with Atomic Precision: Structural Analysis and Electrocatalytic Performance toward CO2 Reduction. Angewandte Chemie International Edition, 60, 26136-26141.
https://doi.org/10.1002/anie.202110330
[13] Ma, X.S., Sun, F., Qin, L.B., et al. (2022) Electrochemical CO2 Reduction Catalyzed by Atomically Precise Alkynyl-Protected Au7Ag8, Ag9Cu6, and Au2Ag8Cu5 Nanoclusters: Probing the Effect of Multi-Metal Core on Selectivity. Chemical Science, 13, 10149-10158.
https://doi.org/10.1039/d2sc02886g
[14] Chen, L.Y., Sun, F., Shen, Q.L., et al. (2022) Homoleptic Alkynyl-Protected Ag32 Nanocluster with Atomic Precision: Probing the Ligand Effect toward CO2 Electroreduction and 4-Nitrophenol Reduction. Nano Research, 15, 8908-8913.
https://doi.org/10.1007/s12274-022-4812-6
[15] Yoo, S., Yoo, S., Deng, G., et al. (2023) Nanocluster Surface Microenvironment Modulates Electrocatalytic CO2 Reduction. Advanced Materials, 36, Article ID: 2313032.
https://doi.org/10.1002/adma.202313032
[16] Chen, Y., Zhou, X., Liu, X., et al. (2025) Understanding the Role of Potential and Cation Effect on Electrocatalytic CO2 Reduction in All-Alkynyl-Protected Ag15 Nanoclusters. Journal of the American Chemical Society, 147, 2699-2713.
https://doi.org/10.1021/jacs.4c15112
[17] Tian, Y., Mu, W., Wu, L., et al. (2023) Stepwise Assembly of Thiacalix[4]Arene-Protected Ag/Ti Bimetallic Nanoclusters: Accurate Identification of Catalytic Ag Sites in CO2 Electroreduction. Chemical Science, 14, 10212-10218.
https://doi.org/10.1039/d3sc02793g
[18] Li, S., Liu, Q., Li, L., et al. (2024) Thiacalix[4]Arene-Stabilized Sb/Ag Bimetallic Nanoclusters: Elucidating the Effects of Sb Doping on Electrocatalytic CO2 Reduction in Ag Clusters. Inorganic Chemistry, 63, 18972-18980.
https://doi.org/10.1021/acs.inorgchem.4c03324
[19] Li, S.-Q., Li, L.-J., Tian, Y.Q., et al. (2024) Synthesis and Characterization of Ag(I) Alkynyl Nanoclusters Utilizing Movi-Anchored Thiacalix[4]arene Metalloligands: Application in Electrocatalytic CO2 Reduction. Polyoxometalates, 3, Article ID: 9140038.
https://doi.org/10.26599/pom.2023.9140038
[20] Seong, H., Chang, K., Sun, F., et al. (2023) ClAg14(C≡CtBu)12 Nanoclusters as Efficient and Selective Electrocatalysts toward Industrially Relevant CO2 Conversion. Advanced Science, 11, Article ID: 2306089.
https://doi.org/10.1002/advs.202306089
[21] Liu, T., Li, Y., Zuo, Y., et al. (2025) Impact of Free Valence Electron Contraction on the Optical and Electrocatalytic Properties of Nanoclusters: Based on M1Ag14 (M = Pt/Pd) Series Nanoclusters. Nanoscale, 17, 10886-10891.
https://doi.org/10.1039/d5nr00336a
[22] Ma, A., Li, Y., Zuo, Y., et al. (2025) Atomic-Level Insights into the Synergistic Effect between Ligands on Electrochemical CO2 Reduction: Based on Au7Ag8 Series Nanoclusters. Rare Metals.
https://doi.org/10.1007/s12598-025-03267-1
[23] Deng, G., Yun, H., Chen, Y., et al. (2024) Ferrocene‐Functionalized Atomically Precise Metal Clusters Exhibit Synergistically Enhanced Performance for CO2 Electroreduction. Angewandte Chemie International Edition, 64, e202418264.
https://doi.org/10.1002/anie.202418264
[24] Shen, Q., Cong, X., Chen, L., et al. (2023) Synthesis, Structure Anatomy, and Catalytic Properties of Ag14Cu2 Nanoclusters Co-Protected by Alkynyl and Phosphine Ligands. Dalton Transactions, 52, 16812-16818.
https://doi.org/10.1039/d3dt02838k
[25] Zhu, X., Zhu, P., Cong, X., et al. (2024) Atomically Precise Alkynyl-Protected Ag19Cu2 Nanoclusters: Synthesis, Structure Analysis, and Electrocatalytic CO2 Reduction Application. Nanoscale, 16, 16952-16957.
https://doi.org/10.1039/d4nr02702g
[26] Deng, G., Kim, J., Bootharaju, M.S., et al. (2022) Body-Centered-Cubic-Kernelled Ag15Cu6 Nanocluster with Alkynyl Protection: Synthesis, Total Structure, and CO2 Electroreduction. Journal of the American Chemical Society, 145, 3401-3407.
https://doi.org/10.1021/jacs.2c10338
[27] Seong, H., Choi, M., Park, S., et al. (2022) Promoting CO2-To-Co Electroreduction via the Active-Site Engineering of Atomically Precise Silver Nanoclusters. ACS Energy Letters, 7, 4177-4184.
https://doi.org/10.1021/acsenergylett.2c02018
[28] Lin, X., Ma, W., Sun, K., et al. (2020) [AuAg26(Sr)18S] Nanocluster: Open Shell Structure and High Faradaic Efficiency in Electrochemical Reduction of CO2 to Co. The Journal of Physical Chemistry Letters, 12, 552-557.
https://doi.org/10.1021/acs.jpclett.0c03416
[29] Wang, Y., Xiong, L., Cheng, Q., et al. (2025) Structural Disproportionation of Ag20Cu10 Highlights the Impact of Cluster Structure on Electrocatalytic Properties for CO2 Reduction. Inorganic Chemistry Frontiers, 12, 2495-2505.
https://doi.org/10.1039/d4qi03264k
[30] Zha, J., Meng, X., Fan, W., et al. (2023) Surface Site-Specific Replacement for Catalysis Selectivity Switching. ACS Applied Materials & Interfaces, 15, 3985-3992.
https://doi.org/10.1021/acsami.2c18553
[31] Li, S., Dai, L., Tian, Y., et al. (2023) Polymolybdate-guided Assembly of a Thiacalix[4]Arene-Protected Ag Nanocluster for Electrocatalytic CO2 Reduction. Chemical Communications, 59, 575-578.
https://doi.org/10.1039/d2cc05692e
[32] Hu, J., Zhou, M., Li, K., et al. (2023) Evolution of Electrocatalytic CO2 Reduction Activity Induced by Charge Segregation in Atomically Precise AuAg Nanoclusters Based on Icosahedral M13 Unit 3D Assembly. Small, 19, Article ID: 2301357.
https://doi.org/10.1002/smll.202301357
[33] Hollevoet, L., De Ras, M., Roeffaers, M., et al. (2020) Energy-Efficient Ammonia Production from Air and Water Using Electrocatalysts with Limited Faradaic Efficiency. ACS Energy Letters, 5, 1124-1127.
https://doi.org/10.1021/acsenergylett.0c00455
[34] Chu, K., Weng, B., Lu, Z., et al. (2025) Exploration of Multidimensional Structural Optimization and Regulation Mechanisms: Catalysts and Reaction Environments in Electrochemical Ammonia Synthesis. Advanced Science, 12, Article ID: 2416053.
https://doi.org/10.1002/advs.202416053
[35] Yang, B., Ding, W., Zhang, H., et al. (2021) Recent Progress in Electrochemical Synthesis of Ammonia from Nitrogen: Strategies to Improve the Catalytic Activity and Selectivity. Energy & Environmental Science, 14, 672-687.
https://doi.org/10.1039/d0ee02263b
[36] Su, S.D., Li, X.M., Tan, M.Y., et al. (2023) Enhancement of the Properties of ZnAl-LDHs for Photocatalytic Nitrogen Reduction Reaction by Controlling Anion Intercalation. Inorganic Chemistry Frontiers, 10, 869-879.
https://doi.org/10.1039/d2qi02030k
[37] Fu, X. (2023) Lithium-Mediated Nitrogen Reduction for Electrochemical Ammonia Synthesis: From Batch to Flow Reactor. Materials Today Catalysis, 3, Article ID: 100031.
https://doi.org/10.1016/j.mtcata.2023.100031
[38] Jiang, M., Chen, X., Chen, F., et al. (2025) Effective N2 Activation Strategies for Electrochemical Ammonia Synthesis. Chem, 11, Article ID: 102441.
https://doi.org/10.1016/j.chempr.2025.102441
[39] Han, M., Guo, M.H., Yun, Y.P., et al. (2022) Effect of Heteroatom and Charge Reconstruction in Atomically Precise Metal Nanoclusters on Electrochemical Synthesis of Ammonia. Advanced Functional Materials, 32, Article ID: 2202820.
https://doi.org/10.1002/adfm.202202820
[40] Zhang, H.R., Wang, H.J., Cao, X.Q., et al. (2024) Unveiling Cutting‐Edge Developments in Electrocatalytic Nitrate‐to‐Ammonia Conversion. Advanced Materials, 36, Article ID: 2312746.
https://doi.org/10.1002/adma.202312746
[41] Ma, G.Y., Sun, F., Qiao, L., et al. (2023) Atomically Precise Alkynyl-Protected Ag20Cu12 Nanocluster: Structure Analysis and Electrocatalytic Performance toward Nitrate Reduction for NH3 Synthesis. Nano Research, 16, 10867-10872.
https://doi.org/10.1007/s12274-023-5885-6
[42] Qin, L.B., Sun, F., Gong, Z.H., et al. (2023) Electrochemical NO3 Reduction Catalyzed by Atomically Precise Ag30Pd4 Bimetallic Nanocluster: Synergistic Catalysis or Tandem Catalysis? ACS Nano, 17, 12747-12758.
https://doi.org/10.1021/acsnano.3c03692
[43] Liu, L., Zheng, S., Chen, H., et al. (2024) Tandem Nitrate‐to‐Ammonia Conversion on Atomically Precise Silver Nanocluster/Mxene Electrocatalyst. Angewandte Chemie International Edition, 63, e202316910.
https://doi.org/10.1002/anie.202316910
[44] Zaman, S., Huang, L., Douka, A.I., et al. (2021) Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Angewandte Chemie International Edition, 60, 17832-17852.
https://doi.org/10.1002/anie.202016977
[45] Yuan, X.H. and Zhu, M.Z. (2023) Recent Advances in Atomically Precise Metal Nanoclusters for Electrocatalytic Applications. Inorganic Chemistry Frontiers, 10, 3995-4007.
https://doi.org/10.1039/d3qi00656e
[46] Xiao, F., Wang, Y.C., Wu, Z.P., et al. (2021) Recent Advances in Electrocatalysts for Proton Exchange Membrane Fuel Cells and Alkaline Membrane Fuel Cells. Advanced Materials, 33, Article ID: 2006292.
https://doi.org/10.1002/adma.202006292
[47] Zou, X., He, S., Kang, X., et al. (2021) New Atomically Precise M1Ag21 (M = Au/Ag) Nanoclusters as Excellent Oxygen Reduction Reaction Catalysts. Chemical Science, 12, 3660-3667.
https://doi.org/10.1039/d0sc05923d
[48] Mu, C., Wang, B., Yao, Q.F., et al. (2024) Composition-Dependent Catalytic Performance of AuxAg25-X Alloy Nanoclusters for Oxygen Reduction Reaction. Nano Research, 17, 9490-9497.
https://doi.org/10.1007/s12274-024-6875-z
[49] Ding, J.Y., Yang, H., Zhang, S.S., et al. (2022) Advances in the Electrocatalytic Hydrogen Evolution Reaction by Metal Nanoclusters‐Based Materials. Small, 18, Article ID: 2204524.
https://doi.org/10.1002/smll.202204524
[50] Zhu, X., Chen, L., Liu, Y., et al. (2023) Atomically Precise Au Nanoclusters for Electrochemical Hydrogen Evolution Catalysis: Progress and Perspectives. Polyoxometalates, 2, Article ID: 9140031.
https://doi.org/10.26599/pom.2023.9140031
[51] Shen, H., Zhu, Q., Xu, J., et al. (2023) Stepwise Construction of Ag29 Nanocluster-Based Hydrogen Evolution Electrocatalysts. Nanoscale, 15, 14941-14948.
https://doi.org/10.1039/d3nr03537a
[52] Chen, H., Liu, L., Ma, X., et al. (2024) Atomically Precise Silver-Based Bimetallic Clusters for Electrocatalytic Urea Synthesis. National Science Review, 12, nwae440.
https://doi.org/10.1093/nsr/nwae440
[53] Zhang, Z., Yin, R., Song, Z., et al. (2025) Efficient Electrocatalytic Semi‐Hydrogenation of Alkynes by Interfacial Engineering of Atomically Precise Silver Nanoclusters. Angewandte Chemie International Edition, 64, e202500389.
https://doi.org/10.1002/anie.202500389

Baidu
map