[1] |
Copolovici, D.M., Langel, K., Eriste, E., et al. (2014) Cell-Penetrating Peptides: Design, Synthesis, and Applications. ACS Nano, 8, 1972-1994. https://doi.org/10.1021/nn4057269 |
[2] |
Bechara, C. and Sagan, S. (2013) Cell-Penetrating Peptides: 20 Years Later, Where Do We Stand? FEBS Letters, 587, 1693-1702. https://doi.org/10.1016/j.febslet.2013.04.031 |
[3] |
Bolhassani, A. (2011) Potential Efficacy of Cell-Penetrating Peptides for Nucleic Acid and Drug Delivery in Cancer. Biochimicaet Biophysica Acta (BBA)—Reviews on Cancer, 1816, 232-246. https://doi.org/10.1016/j.bbcan.2011.07.006 |
[4] |
Futaki, S. (2005) Membrane-Permeable Arginine-Rich Peptides and the Translocation Mechanisms. Advanced Drug Delivery Reviews, 57, 547-558. https://doi.org/10.1016/j.addr.2004.10.009 |
[5] |
Futaki, S., Nakase, I., Tadokoro, A., et al. (2007) Arginine-Rich Peptides and Their Internalization Mechanisms. Biochemical Society Transactions, 35, 784-787. https://doi.org/10.1042/BST0350784 |
[6] |
Berlose, J.P., Convert, O., Derossi, D., et al. (1996) Conformational and Associative Behaviours of the Third Helix of Antennapedia Homeodomain in Membrane-Mimetic Environments. The FEBS Journal, 242, 372-386. https://doi.org/10.1111/j.1432-1033.1996.0372r.xl |
[7] |
Ding, H.M. and Ma, Y.Q. (2012) Role of Physicochemical Properties of Coating Ligands in Receptor-Mediated Endocytosis of Nanoparticles. Biomaterials, 33, 5798-5802. https://doi.org/10.1016/j.biomaterials.2012.04.055 |
[8] |
Tian, W.D. and Ma, Y.Q. (2012) Insights into the Endosomal Escape Mechanism via Investigation of Dendrimer-Membrane Interactions. Soft Matter, 8, 6378-6384. https://doi.org/10.1039/c2sm25538c |
[9] |
Verkleij, A.J., Zwaal, R.F.A., Roelofsen, B., et al. (1973) The Asymmetric Distribution of Phospholipids in the Human Red Cell Membrane. A Combined Study Using Phospholipases and Freeze-Etch Electron Microscopy. BiochimicaetBiophysica Acta (BBA)—Biomembranes, 323, 178-193. https://doi.org/10.1016/0005-2736(73)90143-0 |
[10] |
Sahu, S.K., Gummadi, S.N., Manoj, N., et al. (2007) Phospholipid Scramblases: An Overview. Archives of Biochemistry and Biophysics, 462, 103-114. https://doi.org/10.1016/j.abb.2007.04.002 |
[11] |
Li, Z.L., Ding, H.M. and Ma, Y.Q. (2012) Translocation of Polyarginines and Conjugated Nanoparticles across Asymmetric Membranes. Soft Matter, 9, 1281-1286. https://doi.org/10.1039/C2SM26519B |
[12] |
Ding, H.M. and Ma, Y.Q. (2015) Theoretical and Computational Investigations of Nanoparticle-Biomembrane Interactions in Cellular Delivery. Small, 11, 1055-1071. https://doi.org/10.1002/smll.201401943 |
[13] |
Ding, H.M., Tian, W.D. and Ma, Y.Q. (2012) Designing Nanoparticle Translocation through Membranes by Computer Simulations. ACS Nano, 6, 1230-1238. https://doi.org/10.1021/nn2038862 |
[14] |
Yang, K. and Ma, Y.Q. (2010) Computer Simulation of the Translocation of Nanoparticles with Different Shapes across a Lipid Bilayer. Nature Nanotechnology, 5, 579-583. https://doi.org/10.1038/nnano.2010.141 |
[15] |
Shi, X., Kong, Y. and Gao, H. (2008) Coarse Grained Molecular Dynamics and Theoretical Studies of Carbon Nanotubes Entering Cell Membrane. Acta Mechanica Sinica, 24, 161-169. https://doi.org/10.1007/s10409-007-0131-0 |
[16] |
Wang, J., Wei, Y., Shi, X., et al. (2013) Cellular Entry of Gra-phenenanosheets: The Role of Thickness, Oxidation and Surface Adsorption. RSC Advances, 3, 15776-15782. https://doi.org/10.1039/c3ra40392k |
[17] |
Marrink, S.J., Risselada, H.J., Yefimov, S., et al. (2007) The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. The Journal of Physical Chemistry B, 111, 7812-7824. https://doi.org/10.1021/jp071097f |
[18] |
Agrawal, P., Bhalla, S., Usmani, S.S., et al. (2016) CPPsite 2.0: A Repository of Experimentally Validated Cell-Penetrating Peptides. Nucleic Acids Research, 44, D1098-D1103. https://doi.org/10.1093/nar/gkv1266 |
[19] |
Monticelli, L., Kandasamy, S.K., Periole, X., et al. (2008) The MARTINI Coarse-Grained Force Field: Extension to Proteins. Journal of Chemical Theory and Computation, 4, 819-834. https://doi.org/10.1021/ct700324x |
[20] |
Takechi, Y., Yoshii, H., Tanaka, M., et al. (2011) Physicochemical Mechanism for the Enhanced Ability of Lipid Membrane Penetration of Polyarginine. Langmuir, 27, 7099-7107. https://doi.org/10.1021/la200917y |
[21] |
Marrink, S.J., De Vries, A.H. and Mark, A.E. (2004) Coarse Grained Model for Semiquantitative Lipid Simulations. The Journal of Physical Chemistry B, 108, 750-760. https://doi.org/10.1021/jp036508g |
[22] |
Wassenaar, T.A., Ingólfsson, H.I., Böckmann, R.A., et al. (2015) Computational Lipidomics with Insane: A Versatile Tool for Generating Custom Membranes for Molecular Simulations. Journal of Chemical Theory and Computation, 11, 2144-2155. https://doi.org/10.1021/acs.jctc.5b00209 |
[23] |
Lee, H. and Larson, R.G. (2006) Molecular Dynamics Simulations of PAMAM Dendrimer-Induced Pore Formation in DPPC Bilayers with a Coarse-Grained Model. The Journal of Physical Chemistry B, 110, 18204-18211. https://doi.org/10.1021/jp0630830 |
[24] |
Essmann, U., Perera, L., Berkowitz, M.L., et al. (1995) A Smooth Particle Mesh Ewald Method. The Journal of Chemical Physics, 103, 8577-8593. https://doi.org/10.1063/1.470117 |
[25] |
Li, Y., Chen, X. and Gu, N. (2008) Computational Investigation of Interaction between Nanoparticles and Membranes: Hydrophobic/Hydrophilic Effect. The Journal of Physical Chemistry B, 112, 16647-16653. https://doi.org/10.1021/jp8051906 |
[26] |
Van Der Spoel, D., Lindahl, E., Hess, B., et al. (2005) GROMACS: Fast, Flexible, and Free. Journal of Computational Chemistry, 26, 1701-1718. https://doi.org/10.1002/jcc.20291 |
[27] |
Humphrey, W., Dalke, A. and Schulten, K. (1996) VMD: Visual Molecular Dynamics. Journal of Molecular Graphics, 14, 33-38. https://doi.org/10.1016/0263-7855(96)00018-5 |
[28] |
He, X., Lin, M., Sha, B., et al. (2015) Coarse-Grained Molecular Dynamics Studies of the Translocation Mechanism of Polyarginines across Asymmetric Membrane under Tension. Scientific Reports, 5, Article No. 12808. https://doi.org/10.1038/srep12808 |
[29] |
Su, Y., Waring, A.J., Ruchala, P., et al. (2010) Membrane-Bound Dynamic Structure of an Arginine-Rich Cell-Penetrating Peptide, the Protein Transduction Domain of HIV TAT, from Solid-State NMR. Biochemistry, 49, 6009-6020. https://doi.org/10.1021/bi100642n |
[30] |
Lee, H. and Larson, R.G. (2008) Coarse-Grained Molecular Dynamics Studies of the Concentration and Size Dependence of Fifth- and Seventh-Generation PAMAM Dendrimers on Pore Formation in DMPC Bilayer. The Journal of Physical Chemistry B, 112, 7778-7784. https://doi.org/10.1021/jp802606y |