[1] |
Borg, B.M. and Wernersson, L.E. (2013) Synthesis and Properties of Antimonies Nanowires. Nanotechnology, 24, 202001. https://doi.org/10.1088/0957-4484/24/20/202001 |
[2] |
Cui, Q., Yang, Y., Li, J., et al. (2017) Material and Device Architecture Engineering toward High Performance Two- Dimensional (2D) Photodetectors. Crystals, 7, 149. https://doi.org/10.3390/cryst7050149 |
[3] |
Chen, H., Liu, H., Zhang, Z., et al. (2016) Nanostructured Photodetectors: From Ultraviolet to Terahertz. Advanced Materials, 28, 403-433. https://doi.org/10.1002/adma.201503534 |
[4] |
Zhang, Y., Wu, J., Aagesen, M., et al. (2015) III-V Nanowires and Nanowire Optoelectronic Devices. Journal of Physics D: Applied Physics, 48, 463001. https://doi.org/10.1088/0022-3727/48/46/463001 |
[5] |
Li, L., Pan, D., Xue, Y., et al. (2017) Near Full-Composition-Range High-Quality GaAs1-xSbx Nanowires Grown by Molecular-Beam Epitaxy. Nano Letters, 17, 622-630. https://doi.org/10.1021/acs.nanolett.6b03326 |
[6] |
Noh, Y.K., Hwang, Y.J., Kim, M.D., et al. (2007) Structural Properties of GaSb Layers Grown on InAs, AlSb, and GaSb Buffer Layers on GaAs (001) Substrates. Journal of the Korean Physical Society, 50, 1929. |
[7] |
La Pierre, R.R., Robson, M., Azizur-Rahman, K.M., et al. (2017) A Review of III-V Nanowire Infrared Photodetectors and Sensors. Journal of Physics D: Applied Physics, 50, 123001. https://doi.org/10.1088/1361-6463/aa5ab3 |
[8] |
Dutta, P.S., Bhat, H.L. and Kumar, V. (1997) The Physics and Technology of Gallium Antimonide: An Emerging Optoelectronic Material. Applied Physics, 81, 5821-5870. https://doi.org/10.1063/1.365356 |
[9] |
Johnson, G.R., Cavenett, B.C., Kerr T M, et al. (1988) Optical, Hall and Cyclotron Resonance Measurements of GaSb Grown by Molecular Beam Epitaxy. Semiconductor Science and Technology, 3, 1157. https://doi.org/10.1088/0268-1242/3/12/002 |
[10] |
Vurgaftman, I., Meyer, J.R. and Ram-Mohan, L.R. (2001) Band Parameters for III-V Compound Semiconductors and Their Alloys. Applied Physics, 89, 5815-5875. https://doi.org/10.1063/1.1368156 |
[11] |
Dutta, P.S., Rao, K.S.R.K., Bhat, H.L., et al. (1995) Surface Morphology, Electrical and Optical Properties of Gallium Antimonide Layers Grown by Liquid Phase Epitaxy. Journal of Crystal Growth, 152, 14-20. https://doi.org/10.1016/0022-0248(95)00071-2 |
[12] |
Dutta, P.S., Bhat, H.L. and Kumar, V. (1995) Liquid Phase Epitaxial Growth of Pure and Doped GaSb Layers: Morphological Evolution and Native Defects. Bulletin of Materials Science, 18, 865-874. https://doi.org/10.1007/BF02745278 |
[13] |
Jakowetz, W., Rühle, W., Breuninger, K., et al. (1972) Luminescence and Photoconductivity of Undoped p-GaSb. Physica Status Solidi, 12, 169-174. |
[14] |
Shin, J., Verma, A., Stringfellow, G.B., et al. (1972) Growth of GaSb using Tris(dimethylamido)antimony. Journal of Crystal Growth, 151, 1-8. https://doi.org/10.1016/0022-0248(94)01024-2 |
[15] |
Chang, L.L. and Ploog, K. (1985) Molecular Beam Epitaxy and Heterostructures. Springer, Berlin. https://doi.org/10.1007/978-94-009-5073-3 |
[16] |
Wieder, H.H. and Clawson, A.R. (1973) Photo-Electronic Properties of InAs0.07Sb0.93 Films. Thin Solid Films, 15, 217-221. https://doi.org/10.1016/0040-6090(73)90045-X |
[17] |
Miyoshi, H. and Horikoshi, Y. (2001) Substrate Lattice Constant Effect on the Miscibility Gap of MBE Grown InAsSb. Journal of Crystal Growth, 227, 571-576. https://doi.org/10.1016/S0022-0248(01)00774-6 |
[18] |
Chou, C.Y., Torfi, A. and Wang, W.I. (2013) Improvement of GaAsSb Alloys on InP Grown by Molecular Beam Epitaxy with Substrate Tilting. Journal of Applied Physics, 114, Article ID: 153111. https://doi.org/10.1063/1.4825220 |
[19] |
Gao, X., Wei, Z.P., Zhao, F., et al. (2016) Investigation of Localized States in GaAsSb Epilayers Grown by Molecular Beam Epitaxy. Scientific Reports, 6, Article No. 29112. https://doi.org/10.1038/srep29112 |
[20] |
Garbuzov, D.Z., Martinelli, R.U., Lee, H., et al. (1997) 4 W Quasi-Continuous-Wave Output Power from 2 μm AlGaAsSb/InGaAsSb Single-Quantum-Well Broadened Waveguide Laser Diodes. Applied Physics Letters, 70, 2931- 2933. https://doi.org/10.1063/1.118747 |
[21] |
Karouta, F., Mani, H., Bhan, J., et al. (1987) Croissance par épitaxieen phase liquide et caractérisation d’alliages Ga1−xInxAsySb1−y à paramètre de mailleaccordé sur celui de GaSb. Revue de Physique Appliquée, 22, 1459-1467. https://doi.org/10.1051/rphysap:0198700220110145900 |
[22] |
Craig, A.P., Jain, M., Wicks, G., et al. (2015) Short-Wave Infrared Barriode Detectors using InGaAsSb Absorption Material Lattice Matched to GaSb. Applied Physics Letters, 106, Article ID: 201103. https://doi.org/10.1063/1.4921468 |
[23] |
Adachi, S. (1987) Band Gaps and Refractive Indices of AlGaAsSb, GaInAsSb, and InPAsSb: Key Properties for a Variety of the 2-4 μm Optoelectronic Device Applications. Journal of Applied Physics, 61, 4869-4876. https://doi.org/10.1063/1.338352 |
[24] |
Ait, K.H., Boukredimi, D. and Mebarki, M. (1997) Band Discontinuities of Perfectly Lattice-Matched GaSb(n)/ GaAlAsSb(p)/GaSb(p) Double Heterojunction. Physica Status Solidi, 163, 101-106. |
[25] |
Jasik, A., Kubacka-Traczyk, J., Regiński, K., et al. (2011) Method of Determination of AlGaAsSb Layer Composition in Molecular Beam Epitaxy Processes with Regard to Unintentional as Incorporation. Journal of Applied Physics, 110, Article ID: 073509. https://doi.org/10.1063/1.3642995 |
[26] |
Keyes, R.J. and Quist, T.M. (1962) Recombination Radiation Emitted by Gallium Arsenide. Proceedings of the IRE, 50, 1822-1823. |
[27] |
Nathan, M.I., Dumke, W.P., Burns, G., et al. (1962) Stimulated Emission of Radiation from GaAs p-n Junctions. Applied Physics Letters, 1, 62-64. https://doi.org/10.1063/1.1777371 |
[28] |
Quist, T.M., Rediker, R.H., Keyes, R.J., et al. (1962) Semiconductor Master of GaAs. Applied Physics Letters, 1, 91-92. https://doi.org/10.1063/1.1753710 |
[29] |
Panish, M., Hayashi, I. and Sumski, S. (1969) A Technique for the Preparation of Low-Threshold Room-Temperature GaAs Laser Diode Structures. Quantum Electronics, 5, 210-211. https://doi.org/10.1109/JQE.1969.1075757 |
[30] |
Alferov, Z.I., Andreev, V.M., Portnoi, E.L., et al. (1970) AlAs-GaAs Heterojunction Injection Lasers with a Low Room-Temperature Threshold. Soviet Physics Semiconductors, 3, 1107-1110. |
[31] |
Panish, M.B., Hayashi, I. and Sumski, S. (1970) Double-Heterosture Injection Lasers with Room Temperature Thresholds as Low as 2300 A/cm2. Applied Physics Letters, 16, 326-327. https://doi.org/10.1063/1.1653213 |
[32] |
Hasan, M.M., Islam, M.R. and Teramoto, K. (2012) Crystallographic Orientation-Dependent Optical Properties of GaInSb Mid-Infrared Quantum Well Laser. Optik—International Journal for Light and Electron Optics, 123, 1993- 1997. https://doi.org/10.1016/j.ijleo.2011.09.021 |
[33] |
Mourad, C., Gianardi, D., Malloy, K.J., et al. (2000) 2 μm GaInAsSb/AlGaAsSb Mid-Infrared Laser Grown Digitally on GaSb by Modulated-Molecular Beam Epitaxy. Journal of Applied Physics, 88, 5543-5546. https://doi.org/10.1063/1.1319967 |
[34] |
Li, W., HÉ, J.B., et al. (2004) Strain-Compensated InGaAsSb/AlGaAsSb Mid-Infrared Quantum-Well Lasers. Applied Physics Letters, 84, 2016-2018. https://doi.org/10.1063/1.1687981 |
[35] |
Rodriguez, J.B., Cerutti, L. and Tournié, E. (2009) GaSb-Based, 2.2 μm Type-I Laser Fabricated on GaAs Substrate Operating Continuous Wave at Room Temperature. Applied Physics Letters, 94, Article ID: 023506. https://doi.org/10.1063/1.3072596 |
[36] |
Lin, C.H. and Lee, C.P. (2014) Enhanced Optical Property in Quaternary GaInAsSb/AlGaAsSb Quantum Wells. Journal of Applied Physics, 116, Article ID: 153504. https://doi.org/10.1063/1.4898389 |
[37] |
Xing, J., Zhang, Y., Xu, Y., et al. (2014) High Quality above 3 μm Mid-Infrared InGaAsSb/AIGaInAsSb Multiple-Quantum Well Grown by Molecular Beam Epitaxy. Chinese Physics B, 23, 454-457. https://doi.org/10.1088/1674-1056/23/1/017805 |
[38] |
Xing, J.L., Zhang, Y., Liao, Y.P., et al. (2014) Room-Temperature Operation of 2.4 μm InGaAsSb/AlGaAsSb Quantum-Well Laser Diodes with Low-Threshold Current Density. Chinese Physics Letters, 31, Article ID: 054204. https://doi.org/10.1088/0256-307X/31/5/054204 |
[39] |
Sifferman, S.D., Nair, H.P., Salas, R., et al. (2015) Highly Strained Mid-Infrared Type-I Diode Lasers on GaSb. IEEE Journal of Selected Topics in Quantum Electronics, 21, 248-257. https://doi.org/10.1109/JSTQE.2015.2427742 |
[40] |
Vinnichenko, M.Y., Makhov, I.S., Selivanov, A.V., et al. (2016) Effect of Auger Recombination on Non-Equilibrium Charge Carrier Concentration in InGaAsSb/AlGaAsSb Quantum Wells. St Petersburg Polytechnical University Journal Physics & Mathematics, 2, 287-293. https://doi.org/10.1016/j.spjpm.2016.11.007 |
[41] |
Vinnichenko, M.Y., Makhov, I.S., Selivanov, A.V., et al. (2017) Photoluminescence in InGaAsSb/AlGaAsSb Quantum Wells: Impact of Nonradiative Recombination. Journal of Physics: Conference Series, 816, Article ID: 012017. |
[42] |
Vinnichenko, M.Y., Makhov, I.S., Balagula, R., et al. (2017) The Effect of Auger Recombination on the Nonequilibrium Carrier Recombination Rate in the InGaAsSb/AlGaAsSb Quantum Wells. Superlattices& Microstructures, 109, 743-749. https://doi.org/10.1016/j.spmi.2017.05.065 |
[43] |
Janiak, F., Seek, G., Motyka, M., Ryczko, K., Misiewicz, J., Bauer, A., Höfling, S., Kamp, M. and Forchel, A. (2012) Increasing the Optical Transition Oscillator Strength in GaSb-Based Type II Quantum Wells. Applied Physics Letters, 100, Article ID: 231908. https://doi.org/10.1063/1.4726423 |
[44] |
Ryczko, K., Seek, G. and Misiewicz, J. (2013) Eight-Band k p Modeling of InAs/InGaAsSb Type-II W-Design Quantum Well Structures for Interband Cascade Lasers Emitting in a Broad Range of Mid Infrared. Journal of Applied Physics, 114, Article ID: 223519. https://doi.org/10.1063/1.4843076 |
[45] |
Bewley, W.W., Lindle, J.R., Kim, C.S., Kim, M., Canedy, C.L., Vurgaftman, I. and Meyer, J.R. (2008) Lifetimes and Auger Coefficients in Type-II W Interband Cascade Lasers. Applied Physics Letters, 93, Article ID: 041118. https://doi.org/10.1063/1.2967730 |
[46] |
Chow, D.H., Miles, R.H., Hasenberg, T.C., Kost, A.R., Zhang, Y.H., Dunlap, H.L. and West, L. (1995) Mid-Wave Infrared Diode Lasers Based on GaInSb/InAs and InAs/AlSb Superlattices. Applied Physics Letters, 67, 3700-3702. https://doi.org/10.1063/1.115354 |
[47] |
Canedy, C.L., Bewley, W.W., Lindle, J.R., Vurgaftman, I., Kim, C.S., Kim, M. and Meyer, J.R. (2005) Mid-Infrared “W” Diode Lasers with Improved Electrical Characteristics. Applied Physics Letters, 86, Article ID: 211105. https://doi.org/10.1063/1.1938256 |
[48] |
Hader, J., Moloney, J.V., Koch, S.W., Vurgaftman, I. and Meyer, J.R. (2009) High-Power Continuous-Wave Midinfrared Type-II “W” Diode Lasers. Applied Physics Letters, 94, Article ID: 061106. https://doi.org/10.1063/1.3080216 |
[49] |
Motyka, M., Sęk, G., Misiewicz, J., et al. (2009) Fourier Transformed Photoreflectance and Photoluminescence of Mid Infrared GaSb-Based Type II Quantum Wells. Journal of Applied Physics Express, 2, 126505-126505. https://doi.org/10.1143/APEX.2.126505 |
[50] |
Sęk, G., Janiak, F., Motyka, M., et al. (2011) Carrier Loss Mechanisms in Type II Quantum Wells for the Active Region of GaSb-Based Mid-Infrared Interband Cascade Lasers. Optical Materials, 33, 1817-1819. https://doi.org/10.1016/j.optmat.2011.06.019 |
[51] |
Motyka, M., Ryczko, K., Sęk, G., et al. (2012) Type II Quantum Wells on GaSb Substrate Designed for Laser-Based Gas Sensing Applications in a Broad Range of Mid Infrared. Optical Materials, 34, 1107-1111. https://doi.org/10.1016/j.optmat.2012.01.012 |
[52] |
Dyksik, M., Motyka, M., Sęk, G., et al. (2015) Submonolayer Uniformity of Type II InAs/GaInSb W-Shaped Quantum Wells Probed by Full-Wafer Photoluminescence Mapping in the Mid-Infrared Spectral Range. Nanoscale Research Letters, 10, 1-7. https://doi.org/10.1186/s11671-015-1104-z |
[53] |
Dyksik, M., Motyka, M., Weih, R., et al. (2017) Carrier Transfer between Confined and Localized States in Type II InAs/GaAsSb Quantum Wells. Optical & Quantum Electronics, 49, 59. https://doi.org/10.1007/s11082-017-0891-0 |
[54] |
Yu, Z., Yongbin, W., Yingqiang, X., et al. (2012) High-Temperature (T = 80℃) Operation of a 2 μm InGaSb- AlGaAsSb Quantum Well Laser. Journal of Semiconductors, 33, Article ID: 044006. https://doi.org/10.1088/1674-4926/33/4/044006 |
[55] |
Huh, J., Yun, H., Kim, D.C., et al. (2015) Rectifying Single GaAsSb Nanowire Devices Based on Self-Induced Compositional Gradients. Nano Letters, 15, 3709-3715. https://doi.org/10.1021/acs.nanolett.5b00089 |