[1] |
中国工程院“我国核能发展的再研究”项目组. 我国核能发展的再研究[M]. 北京: 清华大学出版社, 2015. |
[2] |
中国科技技术协会主编, 中国核学会编著. 核科学技术学科发展报告(2014-2015) [M]. 北京: 中国科学技术出版社, 2016. |
[3] |
Zinkle, S.J., Terrani, K.A., Gehin, J.C., et al. (2014) Accident Tolerant Fuels for LWRs: A Perspective. Journal of Nuclear Materials, 448, 374-379. https://doi.org/10.1016/j.jnucmat.2013.12.005 |
[4] |
窦鹏, 张鑫, 木村晃彦, 贺跃辉, 刘锦川. 锆和钛含量对铝添加高铬ODS钢氧化物粒子的影响[J]. 材料科学, 2017, 7(3): 413-422. |
[5] |
Brandes, M.C., Kovarik, L., Miller, M.K., et al. (2011) Creep Behavior and Deformation Mechanisms in a Nanocluster Strengthened Ferritic Steel. Acta Materialia, 60, 1827-1839. https://doi.org/10.1016/j.actamat.2011.11.057 |
[6] |
Kimura, A., Kasada, R., Iwata, N., Kishimoto, H., Zhang, C.H., Isselin, J., Dou, P., et al. (2011) Development of Al Added High-Cr ODS Steels for Fuel Cladding of Next Generation Nuclear Systems. Journal of Nuclear Materials, 417, 176-179. https://doi.org/10.1016/j.jnucmat.2010.12.300 |
[7] |
Ukai, S., Nishida, T., Okuda, T., et al. (1998) R&D of Oxide Dispersion Strengthened Ferritic Martensitic Steels for FBR. Journal of Nuclear Materials, 258-263, 1745-1749. https://doi.org/10.1016/S0022-3115(98)00241-4 |
[8] |
Grimes, R.W. and Nuttall, W.J. (2010) Generating the Op-tion of a Two-Stage Nuclear Renaissance. Science, 329, 799-803. https://doi.org/10.1126/science.1188928 |
[9] |
Dou, P., Kimura, A., Okuda, T., et al. (2011) Polymorphic and Co-herency Transition of Y-Al Complex Oxide Particles with Extrusion Temperature in an Al-Alloyed High-Cr Oxide Dispersion Strengthened Ferritic Steel. Acta Materialia, 59, 992-1002. https://doi.org/10.1016/j.actamat.2010.10.026 |
[10] |
Kimura, A., Kasada, R., Iwata, N., Kishimoto, H., Zhang, C.H., Isselin, J., Dou, P., et al. (2009) Super ODS Steels R&D for Fuel Cladding of Next Generation Nuclear Systems 1) Introduction and Alloy Design. In: Proceedings of the ICAPP 2009, Tokyo, Article ID: 9220. |
[11] |
Furukawa, T., Ohtsuka, S., Inoue, M., Okuda, T., Abe, F., Ohnuki, S., Fujisawa, T. and Kimura, A. (2009) Super ODS Steels R&D for Fuel Cladding of Next Generation Nuclear Systems 4) Mechanical Properties at Elevated Temperatures. In: Proceedings of the ICAPP 2009, Tokyo, Article ID: 9221. |
[12] |
Dou, P., Kimura, A., Okuda, T., et al. (2011) Effects of Extrusion Temperature on the Nano-Mesoscopic Structure and Mechanical Properties of an Al-Alloyed High-Cr ODS Ferritic Steel. Journal of Nuclear Materials, 417, 166-170. https://doi.org/10.1016/j.jnucmat.2011.01.061 |
[13] |
Dou, P., Kimura, A., Kasada, R., et al. (2014) TEM and HRTEM Study of Oxide Particles in an Al-Alloyed High-Cr Oxide Dispersion Strengthened Steel with Zr Addition. Journal of Nuclear Materials, 444, 441-453. https://doi.org/10.1016/j.jnucmat.2013.10.028 |
[14] |
Hsiung, L.L., Fluss, M.J., Tumey. S.J., et al. (2010) Formation Mechanism and the Role of Nanoparticles in Fe-Cr ODS Steels Developed for Radiation Tolerance. Physical Review B, 82, 184103. https://doi.org/10.1103/PhysRevB.82.184103 |
[15] |
Dou, P., Kimura, A., Kasada, R., et al. (2017) TEM and HRTEM Study of Oxide Particles in an Al-Alloyed High-Cr Oxide Dispersion Strengthened Ferritic Steel with Hf Ad-dition. Journal of Nuclear Materials, 485, 189-201. https://doi.org/10.1016/j.jnucmat.2016.12.001 |
[16] |
Cho, H.S., Ohkubo, H., Iwata, N., Kimura, A., Ukai, S. and Fujiwara, M. (2006) Improvement of Compatibility of Advanced Ferritic Steels with Super Critical Pressurized Water Toward a Higher Thermally Efficient Water-Cooled Blanket System. Fusion Engineering and Design, 81, 1071-1076. https://doi.org/10.1016/j.fusengdes.2005.09.056 |
[17] |
Cho, H.S. and Kimura, A. (2007) Corrosion Resistance of High-Cr Oxide Dispersion Strengthened Ferritic Steels in Super-Critical Pressurized Water. Journal of Nuclear Materials, 367-370, 1180-1184. https://doi.org/10.1016/j.jnucmat.2007.03.211 |
[18] |
Lee, J.H., Kasada, R., Kimura, A., Okuda, T., Inoue, M., Ukai, S., Ohnuki, S., Fujisawa, T. and Abe, F. (2011) Influence of Alloy Composition and Temperature on Corrosion Behavior of ODS Ferritic Steels. Journal of Nuclear Materials, 417, 1225-1228. https://doi.org/10.1016/j.jnucmat.2010.12.279 |
[19] |
Park, D.J., Kim, H.G., Park, J.Y., Jung, Y.I., Park, J.H. and Koo, Y.H. (2015) A Study of the Oxidation of FeCrAl Alloy in Pressurized Water and High-Temperature Steam Envi-ronment. Corrosion Science, 94, 459-465. https://doi.org/10.1016/j.corsci.2015.02.027 |
[20] |
Zhong, W.C., Mouche, P.A., Han, X.C., Heuser, B.J., Man-dapaka, K.K. and Was, G.S. (2016) Performance of Iron-Chromium-Aluminum Alloy Surface Coatings on Zircaloy 2 under High-Temperature Steam and Normal BWR Operating Conditions. Journal of Nuclear Materials, 470, 327-338. https://doi.org/10.1016/j.jnucmat.2015.11.037 |
[21] |
Unocic, K.A., Hoelzer, D.T. and Pint, B.A. (2015) Micro-structure and Environmental Resistance of Low Cr ODS FeCrAl. Materials at High Temperatures, 32, 123-132. https://doi.org/10.1179/0960340914Z.00000000088 |
[22] |
Cheng, T., Keiser, J.R., Brady, M.P., Terrani, K.A. and Pint, B.A. (2012) Oxidation of Fuel Cladding Candidate Materials in Steam Environments at High Temperature and Pressure. Journal of Nuclear Materials, 427, 396-400. https://doi.org/10.1016/j.jnucmat.2012.05.007 |
[23] |
Pint, B.A., Terrani, K.A., Brady, M.P., Cheng, T. and Keiser, J.R. (2013) High Temperature Oxidation of Fuel Cladding Candidate Materials in Steam-hydrogen Environments. Journal of Nuclear Materials, 440, 420-427. https://doi.org/10.1016/j.jnucmat.2013.05.047 |
[24] |
El-Dasher, B., Farmer, J., Ferreira, J., Serrano de Caro, M., Rubenchik, A. and Kimura, A., (2011) Corrosion of Oxide Dispersion Strengthened Iron-chromium Steels and Tantalum in Fluoride Salt Coolant: An in Situ Compatibility Study for Fusion and Fusion-fission Hybrid Reactor Concepts. Journal of Nuclear Materials, 419, 15-23. https://doi.org/10.1016/j.jnucmat.2011.07.036 |
[25] |
Odette, G.R., Alinger, M.J. and Wirth, B.D. (2008) Recent Developments in Irradiation-Resistant Steels. Annual Review of Materials Research, 38, 471-503. https://doi.org/10.1146/annurev.matsci.38.060407.130315 |
[26] |
Zinkle, S.J. and Snead, L.L. (2014) Designing Radiation Resistance in Materials for Fusion Energy. Annual Review of Materials Research, 44, 241-267. https://doi.org/10.1146/annurev-matsci-070813-113627 |
[27] |
Marquis, E.A., Hyde, J.M., Saxey, D.W., Loza-no-Perez, S., Castro, V.D., Hudson, D., Williams, C.A., Humphry-Baker, S. and Smith, G.D.W. (2009) Nuclear Reactor Materials at the Atomic Scale. Materials Today, 12, 30-37. https://doi.org/10.1016/S1369-7021(09)70296-2 |
[28] |
Allen, T., Busby, J., Meyer, M. and Petti, D. (2010) Mate-rials Challenges for Nuclear Systems. Materials Today, 13, 14-23. https://doi.org/10.1016/S1369-7021(10)70220-0 |
[29] |
Zinkle, S.J. and Was, G.S. (2013) Materials Challenges in Nuclear Energy. Acta Materialia, 61, 735-758. https://doi.org/10.1016/j.actamat.2012.11.004 |
[30] |
Ohnuki, S., Hashimoto, N., Ukai, S., Kimura, A., Inoue, M., Kaito, T., Fujisawa, T., Okuda, T., Abe, F. and Kimura, A. (2009) Super ODS Steels R&D for Fuel Cladding of Next Generation Nuclear System 9) Damage Structure Evolution under Electron-Irradiation. In: Proceedings of the ICAPP 2009, Tokyo, Article ID: 9307. |
[31] |
Yu, C.Z., Oka, H., Hashimoto, N. and Ohnuki, S. (2011) Development of Damage Structure in 16Cr-4Al ODS Steels during Electron-Irradiation. Journal of Nuclear Materials, 417, 286-288. https://doi.org/10.1016/j.jnucmat.2011.02.037 |
[32] |
Bai, X.M., Voter, A.F., Hoagland, R.G., Nastasi, M. and Ub-eruaga, B.P. (2010) Efficient Annealing of Radiation Damage near Grain Boundaries via Interstitial Emission. Science, 327, 1631-1634. https://doi.org/10.1126/science.1183723 |
[33] |
Ackland, G. (2010) Controlling Radiation Damage. Science, 327, 1587-1588. https://doi.org/10.1126/science.1188088 |
[34] |
Yutani, K., Kishimoto, H., Kasada, R. and Kimura, A. (2007) Evaluation of Helium Effects on Swelling Behavior of Oxide Dispersion Strengthened Ferritic Steels under Ion Irradiation. Journal of Nuclear Materials, 367-370, 423-427. https://doi.org/10.1016/j.jnucmat.2007.03.016 |
[35] |
Zhang, C.H., Yang, Y.T., Song, Y., Chen, J., Zhang, L.Q., Jang, J. and Kimura, A. (2014) Irradiation Response of ODS Ferritic Steels to High-energy Ne Ions at HIRFL. Journal of Nuclear Materials, 455, 61-67. https://doi.org/10.1016/j.jnucmat.2014.04.015 |
[36] |
Kishimoto, H., Yutani, K., Kasada, R., Hashitomi, O. and Kimura, A. (2007) Heavy-Ion Irradiation Effects on the Morphology of Complex Oxide Particles in Oxide Dispersion Strengthened Ferritic Steels. Journal of Nuclear Materials, 367-370, 179-184. https://doi.org/10.1016/j.jnucmat.2007.03.149 |
[37] |
Ukai, S. and Fujiwara, M. (2002) Perspective of ODS Alloys Application in Nuclear Environments. Journal of Nuclear Materials, 307-311, 749-757. https://doi.org/10.1016/S0022-3115(02)01043-7 |
[38] |
Ohtsuka, S., Kaito, T., Ukai, S., Inoue, M., Okuda, T. and Kimura, A. (2013) High Temperature Reaction Tests between High-Cr ODS Ferritic Steels and U-Zr Metallic Fuel. Journal of Nuclear Materials, 441, 286-292. https://doi.org/10.1016/j.jnucmat.2013.06.002 |
[39] |
Han, W., Yabuuchi, K., Kimura, A., et al. (2016) Effect of Cr/Al Contents on the 475˚C Age-Hardening in Oxide Dispersion Strengthened Ferritic Steels. Nuclear Materials and Energy, 9, 610-615. https://doi.org/10.1016/j.nme.2016.05.015 |
[40] |
Chen, D., Kimura, A., Han, W., et al. (2015) Age-Hardening Susceptibility of High-Cr ODS Ferritic Steels and SUS430 Ferritic Steel. Fusion Engineering and Design, 98, 1945-1949. https://doi.org/10.1016/j.fusengdes.2015.05.078 |
[41] |
Kobayashi, S. and Takasugi, T. (2010) Mapping of 475˚C Embrittlement in Ferritic Fe-Cr-Al Alloys. Scripta Materialia, 63, 1104-1107. https://doi.org/10.1016/j.scriptamat.2010.08.015 |
[42] |
Li, W., Lu, S., Hu, Q.M., et al. (2013) The Effect of Al on the 475°C Embrittlement of Fe-Cr Alloys. Computational Materials Science, 74, 101-106. https://doi.org/10.1016/j.commatsci.2013.03.021 |
[43] |
Ejenstam, J., Thuvander, M., Olsson, P., Rave, F. and Sza-kalos, P. (2015) Microstructural Stability of Fe-Cr-Al Alloys at 450-550˚C. Journal of Nuclear Materials, 457, 291-297. https://doi.org/10.1016/j.jnucmat.2014.11.101 |
[44] |
Field, K.G., Hu, X., Littrell, K.C., et al. (2015) Radiation Tolerance of Neutron-Irradiated Model Fe-Cr-Al Alloys. Journal of Nuclear Materials, 465, 746-755. https://doi.org/10.1016/j.jnucmat.2015.06.023 |
[45] |
Edmondson, P.D., Briggs, S.A., Yamamoto, Y., et al. (2016) Irradiation-Enhanced α′ Precipitation in Model FeCrAl Alloys. Scripta Materialia, 116, 112-116. https://doi.org/10.1016/j.scriptamat.2016.02.002 |
[46] |
Briggs, S.A., Edmondson, P.D., Littrell, K.C., et al. (2017) A Combined APT and SANS Investigation of α′ Phase Precipitation in Neutron-Irradiated Model FeCrAl Alloys. Acta Materialia, 129, 217-228. https://doi.org/10.1016/j.actamat.2017.02.077 |
[47] |
Field, K.G., Briggs, S.A., Sridharan, K., Howard, R.H. and Yamamoto, Y. (2017) Mechanical Properties of Neutron-irradiated Model and Commercial FeCrAl Alloys. Journal of Nuclear Materials, 489, 118-128. https://doi.org/10.1016/j.jnucmat.2017.03.038 |
[48] |
Read, H.G. and Murakami, H. (1996) Microstructural Influ-ences on the Decomposition of an Al-Containing Ferritic Stainless Steel. Applied Surface Science, 94-95, 334-342. https://doi.org/10.1016/0169-4332(95)00524-2 |
[49] |
Read, H.G., Murakami, H. and Hono, K. (1997) Al Parti-tioning in MA 956, an ODS Ferritic Stainless Steel. Scripta Materialia, 36, 355-361. https://doi.org/10.1016/S1359-6462(96)00388-0 |
[50] |
Capdevila, C., Miller, M.K., Russell, K.F., et al., (2008) Phase Separation in PM 2000™ Fe-Base ODS Alloy: Experimental Study at the Atomic Level. Materials Science and Engineering A, 490, 277-288. https://doi.org/10.1016/j.msea.2008.01.029 |
[51] |
Capdevila, C., Miller, M.K. and Russell, K.F. (2008) Aluminum Partitioning during Phase Separation in Fe-20% Cr-6% Al ODS Alloy. Journal of Materials Science, 43, 3889-3893. https://doi.org/10.1007/s10853-007-2228-z |
[52] |
Capdevila, C., Aranda, M.M., Rementeria, R., et al. (2016) Strengthening by Intermetallic Nanoprecipitation in Fe-Cr-Al-Ti Alloy. Acta Materialia, 107, 27-37. https://doi.org/10.1016/j.actamat.2016.01.039 |
[53] |
Chao, J., Capdevila, C., Serrano, M., et al. (2014) Effect of α-α′ Phase Separation on Notch Impact Behavior of Oxide Dispersion Strengthened (ODS) Fe20Cr5Al Alloy. Materials & Design, 53, 1037-1046. https://doi.org/10.1016/j.matdes.2013.08.007 |
[54] |
Capdevila, C., Miller, M.K. and Chao, J. (2012) Phase Separa-tion Kinetics in a Fe-Cr-Al Alloy. Acta Materialia, 60, 4673-4684. https://doi.org/10.1016/j.actamat.2012.05.022 |
[55] |
Chao, J., González-Carrasco, J.L. and Capdevila, C. (2007) Influence of Annealing at 1100˚C and 475˚C on the Mechanical Properties at Room Temperature of an Iron Base ODS Alloy. ISIJ International, 47, 1214-1220. https://doi.org/10.2355/isijinternational.47.1214 |
[56] |
Field, K.G., Littrell, K.C. and Briggs, S.A. (2018) Precipita-tion of α′ in Neutron Irradiated Commercial FeCrAl Alloys. Scripta Materialia, 142, 41-45. https://doi.org/10.1016/j.scriptamat.2017.08.022 |
[57] |
Chao, J. and Gonzalez-Carrasco, J.L. (2004) On the Dif-ferences of the 475˚C Age Hardening between As-Hot Rolled and Recrystallised MA956 Alloy. Scripta Materialia, 50, 1457-1460. https://doi.org/10.1016/j.scriptamat.2004.03.006 |
[58] |
Capdevila, C., Miller, M.K., Toda, I., et al. (2010) Influence of the α-α′ Phase Separation on the Tensile Properties of Fe-base ODS PM 2000 Alloy. Materials Science and Engineering: A, 527, 7931-7938. https://doi.org/10.1016/j.msea.2010.08.083 |
[59] |
Capdevila, C., Aranda, M.M., Rementeria, R., et al. (2016) Influence of Nanovoids on α-α′ Phase Separation in FeCrAl Oxide Dispersion Strengthened Alloy. Scripta Materialia, 110, 53-56. https://doi.org/10.1016/j.scriptamat.2015.07.044 |
[60] |
Chao, J. and González-Carrasco, J.L. (2002) The Influence of Processing on the 475˚C Hardening of MA 956 Alloy. Scripta Materialia, 47, 423-428. https://doi.org/10.1016/S1359-6462(02)00168-9 |
[61] |
Williams, D.B. and Carter, C.B. (2009) Transmission Electron Microscopy—A Textbook for Materials Science. 2nd Edition, Springer, New York. |
[62] |
Miller, M.K. (2013) Atom-Probe Tomography: The Local Electrode Atom Probe. Microscopy & Microanalysis, 10, 1-423. |