[1] |
Rezania, S., Ponraj, M., Talaiekhozani, A., et al. (2015) Perspectives of Phytoremediation Using Water Hyacinth for Removal of Heavy Metals, Organic and Inorganic Pollutants in Wastewater. Journal of Environmental Management, 163, 125-133. |
[2] |
雷泽湘, 谢贻发, 馀德兰, 等. 大型水生植物对富营养化湖水净化效果的试验研究[J]. 安徽农业科学, 2006, 34(3): 553-554. |
[3] |
吴双跃. 水生植物在污水处理和水质改善中的应用[J]. 现代园艺, 2016(14): 122. |
[4] |
Van Donk, E., Gulati, R.D., Iedema, A., et al. (1993) Macrophyte-Related Shifts in the Nitrogen and Phosphorus Contents of the Different Trophic Levels in a Biomanipulated Shallow Lake. Hydrobiologia, 251, 19-26. |
[5] |
Kobayashi, T., Wu, Y.P., Lu, Z.J., et al. (2015) Characterization of Anaerobic Degradability and Kinetics of Harvested Submerged Aquatic Weeds Used for Nutrient Phytoremediation. Energies, 8, 304-318. https://doi.org/10.3390/en8010304 |
[6] |
Sas-Nowosielska, A., Kucharski, R., Małkowski, E., et al. (2004) Phytoextraction Crop Disposal—An Unsolved Problem. Environmental Pollution, 128, 373-379. https://doi.org/10.1016/j.envpol.2003.09.012 |
[7] |
Brown, D. and Li, Y. (2013) Solid State Anaerobic Co-Digestion of Yard Waste and Food Waste for Biogas Production. Bioresource Technology, 127, 275-280. https://doi.org/10.1016/j.biortech.2012.09.081 |
[8] |
Marañón, E., Castrillón, L., Quiroga, G., et al. (2012) Co-Digestion of Cattle Manure with Food Waste and Sludge to Increase Biogas Production. Waste Management, 32, 1821-1825. https://doi.org/10.1016/j.wasman.2012.05.033 |
[9] |
Dias, T., Fragoso, R. and Duarte, E. (2014) Anaerobic Co-Digestion of Dairy Cattle Manure and Pear Waste. Bioresource Technology, 164, 420-423. https://doi.org/10.1016/j.biortech.2014.04.110 |
[10] |
Prajapati, S.K., Kaushik, P., Malik, A., et al. (2013) Phycoremediation and Biogas Potential of Native Algal Isolates from Soil and Wastewater. Bioresource Technology, 135, 232-238. |
[11] |
Jayaweera, M.W., Dilhani, J.A., Kularatne, R.K., et al. (2007) Biogas Production from Water Hyacinth (Eichhornia crassipes (Mart.) Solms) Grown under Different Nitrogen Concentrations. Journal of Environmental Science & Health Part A Toxic/Hazardous Substances & Environmental Engineering, 42, 925-932. |
[12] |
Brix, H. (1994) Functions of Macrophytes in Constructed Wetlands. Water Science and Technology, 29, 71-78. https://doi.org/10.2166/wst.1994.0160 |
[13] |
何娜, 孙占祥, 张玉龙, 等. 不同水生植物去除水体氮磷的效果[J]. 环境工程学报, 2013, 7(4): 1295-1300. |
[14] |
Thullen, J.S., Sartoris, J.J. and Nelson, S.M. (2005) Managing Vegetation in Sur-face-Flow Wastewater-Treatment Wetlands for Optimal Treatment Performance. Ecological Engineering, 25, 583-593. https://doi.org/10.1016/j.ecoleng.2005.07.013 |
[15] |
Hume, N.P., Fleming, M.S. and Horne, A.J. (2002) Denitrification Potential and Carbon Quality of Four Aquatic Plants in Wetland Microcosms. Soil Science Society of America Journal, 66, 1706-1712. https://doi.org/10.2136/sssaj2002.1706 |
[16] |
Ibekwe, A.M., Lyon, S.R., Leddy, M., et al. (2007) Impact of Plant Density and Microbial Composition on Water Quality from a Free Water Surface Constructed Wetland. Journal of Ap-plied Microbiology, 102, 921-936. |
[17] |
Bastviken, S.K., Weisner, S.E.B., Thiere, G., et al. (2009) Effects of Vegetation and Hydraulic Load on Seasonal Nitrate Removal in Treatment Wetlands. Ecological Engineering, 35, 946-952. https://doi.org/10.1016/j.ecoleng.2009.01.001 |
[18] |
何明雄, 胡启春, 罗安靖, 等. 人工湿地植物生物质资源能源化利用潜力评估[J]. 应用与环境生物学报, 2011, 17(4): 527-531. |
[19] |
陶亮, 严宗诚, 陈砺, 等. 水葫芦厌氧发酵制沼气的正交实验[J]. 广东农业科学, 2011, 38(2): 144-146. |
[20] |
顾新娇, 王文国, 祝其丽, 等. 浮萍与奶牛粪混合厌氧干发酵研究[J]. 环境污染与防治, 2014, 36(7): 18-21. |
[21] |
Jiang, X.Y., Song, X.H., Chen, Y.H., et al. (2014) Research on Bio-gas Production Potential of Aquatic Plants. Renewable Energy, 69, 97-102. https://doi.org/10.1016/j.renene.2014.03.025 |
[22] |
O’Sullivan, C., Rounsefell, B., Grinham, A., et al. (2010) Anaerobic Digestion of Harvested Aquatic Weeds: Water Hyacinth (Eichhornia crassipes), Cabomba (Cabomba caroliniana) and Salvinia (Salvinia molesta). Ecological Engineering, 36, 1459-1468. https://doi.org/10.1016/j.ecoleng.2010.06.027 |
[23] |
董诗旭, 董锦艳, 宋洪川, 等. 滇池蓝藻发酵产沼气的研究[J]. 可再生能源, 2006(2): 16-18. |
[24] |
Escobar, M.M., Voyevoda, M., Fühner, C., et al. (2011) Potential Uses of Elodea nuttallii-Harvested Biomass. Energy Sustainability & Society, 1, 1-8. https://doi.org/10.12677/se.2011.11001 |
[25] |
刘海琴, 宋伟, 高运强, 等. 水葫芦与蓝藻厌氧发酵产沼气研究[J]. 江苏农业科学, 2008(3): 254-256. |
[26] |
Ogunwande, G.A., Muritala, A.O. and Babalola, W.O. (2015) Evaluation of Biogas Yield from Water Leaf Plant (Talinum triangulare). Agricultural Engineering International: The CIGR e-Journal, 17, 110-117. |
[27] |
张众磊, 胡翔, 张列宇, 等. 粪便、餐厨及芦苇混合厌氧消化过程中餐厨含量的影响研究[J]. 农业环境科学学报, 2011, 30(6): 1221-1228. |
[28] |
Chandra, R., Takeuchi, H. and Hasegawa, T. (2012) Methane Production from Lignocellulosic Agricultural Crop Wastes: A Review in Context to Second Generation of Biofuel Production. Renewable and Sustainable Energy Reviews, 16, 1462-1476. https://doi.org/10.1016/j.rser.2011.11.035 |
[29] |
Koyama, M., Yamamoto, S., Ishikawa, K., et al. (2014) Anaerobic Digestion of Submerged Macrophytes: Chemical Composition and Anaerobic Digestibility. Ecological Engineering, 69, 304-309. https://doi.org/10.1016/j.ecoleng.2014.05.013 |
[30] |
Mussgnug, J.H., Klassen, V., Schlüter, A., et al. (2010) Microalgae as Substrates for Fermentative Biogas Production in a Combined Biorefinery Concept. Journal of Biotechnology, 150, 51-56. |
[31] |
Zamalloa, C., Boon, N. and Verstraete, W. (2012) Anaerobic Digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under Mesophilic and Thermophilic Conditions. Applied Energy, 92, 733-738. |
[32] |
Golueke, C.G., Oswald, W.J. and Gotaas, H.B. (1957) Anaerobic Digestion of Algae. Applied Microbiology, 5, 47. |
[33] |
Jain, S.K., Gujral, G.S., Jha, N.K., et al. (1992) Production of Biogas from Azolla pinnata R.Br and Lemna minor L.: Effect of Heavy Metal Contamination. Bioresource Technology, 41, 273-277. |
[34] |
Clark, P.B. and Hillman, P.F. (1996) Enhancement of Anaerobic Digestion Using Duckweed (Lemna minor) Enriched with Iron. Water and Environment Journal, 10, 92-95. https://doi.org/10.1111/j.1747-6593.1996.tb00015.x |
[35] |
Verma, V.K., Singh, Y.P. and Rai, J.P.N. (2007) Biogas Production from Plant Biomass Used for Phytoremediation of Industrial Wastes. Bioresource Technology, 98, 1664-1669. https://doi.org/10.1016/j.biortech.2006.05.038 |
[36] |
Singhal, V. and Rai, J.P.N. (2003) Biogas Production from Water Hyacinth and Channel Grass Used for Phytoremediation of Industrial Effluents. Bioresource Technology, 86, 221-225. |
[37] |
Patel, V.B., Patel, A.R., Patel, M.C., et al. (1993) Effect of Metals on Anaerobic Digestion of Water Hyacinth-Cattle Dung. Applied Biochemistry & Biotechnology, 43, 45-50. https://doi.org/10.1007/BF02916429 |
[38] |
Fernandes, K.D., Cañote, S.J.B., Ribeiro, E.M., et al. (2018) Can We Use Cd-Contaminated Macrophytes for Biogas Production. Environmental Science and Pollution Research, 9, 1-11. |
[39] |
Ben, S.Z., Laffray, X., Ashoour, A., et al. (2014) Metal Accumulation and Distribution in the Organs of Reeds and Cattails in a Constructed Treatment Wetland (Etueffont, France). Ecological Engineering, 64, 1-17. |
[40] |
Zhang, H., Tian, Y., Wang, L., et al. (2016) Effect of Ferrous Chloride on Biogas Production and Enzymatic Activities during Anaerobic Fermentation of Cow Dung and Phragmites Straw. Biodegradation, 27, 69-82. |
[41] |
Tian, Y., Zhang, H., Chai, Y., et al. (2017) Biogas Properties and Enzymatic Analysis during Anaerobic Fermentation of Phragmites australis Straw and Cow Dung: Influence of Nickel Chloride Supplement. Biodegradation, 28, 15-25. https://doi.org/10.1007/s10532-016-9774-5 |
[42] |
Hao, H., Tian, Y., Zhang, H., et al. (2017) Copper Stressed Anaerobic Fermentation: Biogas Properties, Process Stability, Biodegradation and Enzyme Responses. Biodegradation, 28, 369-381. |
[43] |
Zhang, H., Han, X., Tian, Y., et al. (2018) Process Analysis of Anaerobic Fermentation of Phragmites australis Straw and Cow Dung Exposing to Elevated Chromium (VI) Concentrations. Journal of Environmental Management, 224, 414-424. |
[44] |
Yue, Z.-B., Yu, H.-Q. and Wang, Z.-L. (2007) Anaerobic Digestion of Cattail with Rumen Culture in the Presence of Heavy Metals. Bioresource Technology, 98, 781-786. https://doi.org/10.1016/j.biortech.2006.03.017 |
[45] |
Nkemka, V.N. and Murto, M. (2010) Evaluation of Biogas Pro-duction from Seaweed in Batch Tests and in UASB Reactors Combined with the Removal of Heavy Metals. Journal of En-vironmental Management, 91, 1573-1579. |
[46] |
张众磊. 粪便、芦苇和餐厨混合厌氧消化性能研究[D]: [硕士学位论文]. 北京: 北京化工大学, 2011. |
[47] |
Wang, X., Zhang, L., Xi, B., et al. (2015) Biogas Production Improvement and C/N Con-trol by Natural Clinoptilolite Addition into Anaerobic Co-Digestion of Phragmites australis, Feces and Kitchen Waste. Bioresource Technology, 180, 192-199. https://doi.org/10.1016/j.biortech.2014.12.023 |
[48] |
Ma, D., Wang, J., Chen, T., et al. (2015) Iron-Oxide-Promoted Anaerobic Process of the Aquatic Plant of Curly Leaf Pondweed. Energy and Fuels, 29, 4356-4360. https://doi.org/10.1021/acs.energyfuels.5b00573 |
[49] |
Zhang, H., Tian, Y., Wang, L., et al. (2013) Ecophysiological Characteristics and Biogas Production of Cadmium-Contaminated Crops. Bioresource Technology, 146, 628-636. |
[50] |
Willscher, S., Mirgorodsky, D., Jablonski, L., et al. (2013) Hydrometallurgy Field Scale Phytoremediation Experiments on a Heavy Metal and Uranium Contaminated Site, and Further Utilization of the Plant Residues. Hydrometal-lurgy, 131-132, 46-53. |
[51] |
Tian, Y. and Zhang, H. (2016) Producing Biogas from Agricultural Residues Generated during Phytoremediation Process: Possibility, Threshold, and Challenges. International Journal of Green Energy, 13, 1556-1563. https://doi.org/10.1080/15435075.2016.1206017 |
[52] |
Shakeri Yekta, S., Lindmark, A., Skyllberg, U., et al. (2014) Importance of Reduced Sulfur for the Equilibrium Chemistry and Kinetics of Fe(II), Co(II) and Ni(II) Supplemented to Semi-Continuous Stirred tank Biogas Reactors Fed with Stillage. Journal of Hazardous Materials, 269, 83-88. |
[53] |
Keller, C., Ludwig, C., Davoli, F., et al. (2005) Thermal Treatment of Metal-Enriched Biomass Produced from Heavy Metal Phytoextraction. Environmental Science and Technology, 39, 3359-3367. https://doi.org/10.1021/es0484101 |
[54] |
Vigil, M., Marey-Pérez, M.F., Huerta, G.M., et al. (2015) Is Phytoremediation without Biomass Valorization Sustainable Compar-ative LCA of Landfilling vs. Anaerobic Co-Digestion. Science of the Total Environment, 505, 844-850. |
[55] |
Thewys, T., Witters, N., Meers, E., et al. (2010) Economic Viability of Phytoremediation of a Cadmium Contaminated Agricultural Area Using Energy Maize. Part II: Economics of Anaerobic Digestion of Metal Contaminated Maize in Belgium. International Journal of Phytoremediation, 12, 663-679. https://doi.org/10.1080/15226514.2010.493188 |
[56] |
Thewys, T. and Kuppens, T. (2008) Economics of Willow Pyrolysis after Phytoextraction. International Journal of Phyto-Remediation, 10, 561-583. https://doi.org/10.1080/15226510802115141 |
[57] |
Richard, T.L. and Woodbury, P.B. (1992) The Impact of Separation on Heavy Metal Contaminants in Municipal Solid Waste Composts. Biomass and Bioenergy, 3, 195-211. |
[58] |
Selling, R., Hakansson, T. and Bjornsson, L. (2008) Two-Stage Anaerobic Digestion Enables Heavy Metal Removal. Water Science and Technology, 57, 553-558. https://doi.org/10.2166/wst.2008.054 |