[1] |
Sun, J. (2003) Measurement of Histone Acetyltransferase and Histone Deacetylase Activities and Kinetics of Histone Acetylation. Methods, 31, 12-23. https://doi.org/10.1016/S1046-2023(03)00083-5 |
[2] |
Xu, Z., Li, H. and Jin, P. (2012) Epigenetics-Based Therapeutics for Neurodegenerative Disorders. Current Translational Geriatrics and Experimental Gerontology Reports, 1, 229-236. https://doi.org/10.1007/s13670-012-0027-0 |
[3] |
Shakespear, M.R., Halili, M.A., Irvine, K.M., Fairlie, D.P. and Sweet, M.J. (2011) Histone Deacetylases as Regulators of Inflammation and Immunity. Trends in Immunology, 32, 335-343. https://doi.org/10.1016/j.it.2011.04.001 |
[4] |
Chuang, D.M., Leng, Y., Marinova, Z., Kim, H.J. and Chiu, C.T. (2009) Multiple Roles of HDAC Inhibition in Neurodegenerative Conditions. Trends in Neurosciences, 32, 591-601. https://doi.org/10.1016/j.tins.2009.06.002 |
[5] |
Bhaumik, S.R., Smith, E. and Shilatifard, A. (2007) Covalent Modifications of Histones during Development and Disease Pathogenesis. Nature Structural & Molecular Biology, 14, 1008-1016. https://doi.org/10.1038/nsmb1337 |
[6] |
Dong, M., Ning, Z.Q., Xing, P.Y., Xu, J.L., Cao, H.X., Dou, G.F., Meng, Z.Y., Shi, Y.K., Lu, X.P. and Feng, F.Y. (2012) Phase I Study of Chidamide (CS055/HBI-8000), a New Histone Deacetylase Inhibitor, in Pa-tients with Advanced Solid Tumors and Lymphomas. Cancer Chemotherapy and Pharmacology, 69, 1413-1422. https://doi.org/10.1007/s00280-012-1847-5 |
[7] |
Garnock-Jones, K.P. (2015) Panobinostat: First Global Approval. Drugs, 75, 695-704. https://doi.org/10.1007/s40265-015-0388-8 |
[8] |
Marks, P.A. and Breslow, R. (2007) Dimethyl Sulfoxide to Vorinostat: De-velopment of This Histone Deacetylase Inhibitor as an Anticancer Drug. Nature Biotechnology, 25, 84-90. https://doi.org/10.1038/nbt1272 |
[9] |
Shi, Y., Dong, M., Hong, X., Zhang, W., Feng, J., Zhu, J., Yu, L., Ke, X., Huang, H., Shen, Z., Fan, Y., Li, W., Zhao, X., Qi, J., Huang, H., Zhou, D., Ning, Z. and Lu, X. (2015) Results from a Multicenter, Open-Label, Pivotal Phase II Study of Chidamide in Relapsed or Refractory Peripheral T-Cell Lymphoma. Annals of Oncology, 26, 1766-1771. https://doi.org/10.1093/annonc/mdv237 |
[10] |
VanderMolen, K.M., McCulloch, W., Pearce, C.J. and Oberlies, N.H. (2011) Romidepsin (Istodax, NSC 630176, FR901228, FK228, Depsipeptide): A Natural Product Recently Approved for Cutaneous T-Cell Lymphoma. The Journal of Antibiotics (Tokyo), 64, 525-531. https://doi.org/10.1038/ja.2011.35 |
[11] |
Gregoretti, I.V., Lee, Y.M. and Goodson, H.V. (2004) Molecular Evolution of the Histone Deacetylase Family: Functional Implications of Phylogenetic Analysis. Journal of Molecular Biology, 338, 17-31. https://doi.org/10.1016/j.jmb.2004.02.006 |
[12] |
Lombardi, P.M., Cole, K.E., Dowling, D.P. and Christianson, D.W. (2011) Structure, Mechanism, and Inhibition of Histone Deacetylases and Related Metalloenzymes. Current Opinion in Structural Biology, 21, 735-743. https://doi.org/10.1016/j.sbi.2011.08.004 |
[13] |
Yuan, H. and Marmorstein, R. (2012) Structural Basis for Sirtuin Activity and Inhibition. The Journal of Biological Chemistry, 287, 42428-42435. https://doi.org/10.1074/jbc.R112.372300 |
[14] |
Zeb, A., Park, C., Rampogu, S., Son, M., Lee, G. and Lee, K.W. (2019) Structure-Based Drug Designing Recommends HDAC6 Inhibitors to Attenuate Microtubule-Associated Tau-Pathogenesis. ACS Chemical Neuroscience, 10, 1326-1335. https://doi.org/10.1021/acschemneuro.8b00405 |
[15] |
Lee, H.Y., Nepali, K., Huang, F.I., Chang, C.Y., Lai, M.J., Li, Y.H., Huang, H.L., Yang, C.R. and Liou, J.P. (2018) (N-Hydroxycarbonylbenylamino)quinolines as Selective Histone Deacetylase 6 Inhibitors Suppress Growth of Multiple Myeloma in Vitro and in Vivo. Journal of Medicinal Chemistry, 61, 905-917. https://doi.org/10.1021/acs.jmedchem.7b01404 |
[16] |
Lee, H.Y., Fan, S.J., Huang, F.I., Chao, H.Y., Hsu, K.C., Lin, T.E., Yeh, T.K., Lai, M.J., Li, Y.H., Huang, H.L., Yang, C.R. and Liou, J.P. (2018) 5-Aroylindoles Act as Selective Histone Deacetylase 6 In-hibitors Ameliorating Alzheimer’s Disease Phenotypes. Journal of Medicinal Chemistry, 61, 7087-7102. https://doi.org/10.1021/acs.jmedchem.8b00151 |
[17] |
Vogerl, K., Ong, N., Senger, J., Herp, D., Schmidtkunz, K., Marek, M., Muller, M., Bartel, K., Shaik, T.B., Porter, N.J., Robaa, D., Christianson, D.W., Romier, C., Sippl, W., Jung, M. and Bracher, F. (2019) Synthesis and Biological Investigation of Phenothiazine-Based Benzhydroxamic Acids as Selective Histone Deacetylase 6 Inhibitors. Journal of Medicinal Chemistry, 62, 1138-1166. https://doi.org/10.1021/acs.jmedchem.8b01090 |
[18] |
Boyault, C., Sadoul, K., Pabion, M. and Khochbin, S. (2007) HDAC6, at the Crossroads between Cytoskeleton and Cell Signaling by Acetylation and Ubiquitination. Oncogene, 26, 5468-5476. https://doi.org/10.1038/sj.onc.1210614 |
[19] |
Zhang, X., Yuan, Z., Zhang, Y., Yong, S., Salas-Burgos, A., Koomen, J., Olashaw, N., Parsons, J.T., Yang, X.J., Dent, S.R., Yao, T.P., Lane, W.S. and Seto, E. (2007) HDAC6 Modulates Cell Motility by Altering the Acetylation Level of Cortactin. Molecular Cell, 27, 197-213. https://doi.org/10.1016/j.molcel.2007.05.033 |
[20] |
Kovacs, J.J., Murphy, P.J., Gaillard, S., Zhao, X., Wu, J.T., Nicchitta, C.V., Yoshida, M., Toft, D.O., Pratt, W.B. and Yao, T.P. (2005) HDAC6 Regulates Hsp90 Acetylation and Chaperone-Dependent Activa-tion of Glucocorticoid Receptor. Molecular Cell, 18, 601-607. https://doi.org/10.1016/j.molcel.2005.04.021 |
[21] |
Szyk, A., Deaconescu, A.M., Spector, J., Goodman, B., Valenstein, M.L., Ziolkowska, N.E., Kormendi, V., Grigorieff, N. and Roll-Mecak, A. (2014) Molecular Basis for Age-Dependent Microtubule Acetylation by Tubulin Acetyltransferase. Cell, 157, 1405-1415. https://doi.org/10.1016/j.cell.2014.03.061 |
[22] |
Woan, K.V., Lienlaf, M., Perez-Villaroel, P., Lee, C., Cheng, F., Knox, T., Woods, D.M., Barrios, K., Powers, J., Sahakian, E., Wang, H.W., Canales, J., Marante, D., Smalley, K.S.M., Bergman, J., Seto, E., Kozikowski, A., Pinilla-Ibarz, J., Sarnaik, A., Celis, E., Weber, J., Sotomayor, E.M. and Villagra, A. (2015) Targeting Histone Deacetylase 6 Mediates a Dual Anti-Melanoma Effect: Enhanced Antitumor Immunity and Impaired Cell Proliferation. Molecular Oncology, 9, 1447-1457. https://doi.org/10.1016/j.molonc.2015.04.002 |
[23] |
Hai, Y. and Christianson, D.W. (2016) Histone Deacetylase 6 Structure and Molecular Basis of Catalysis and Inhibition. Nature Chemical Biology, 12, 741-747. https://doi.org/10.1038/nchembio.2134 |
[24] |
Miyake, Y., Keusch, J.J., Wang, L., Saito, M., Hess, D., Wang, X., Melancon, B.J., Helquist, P., Gut, H. and Matthias, P. (2016) Structural Insights into HDAC6 Tubulin Deacetylation and Its Selective Inhibition. Nature Chemical Biology, 12, 748-754. https://doi.org/10.1038/nchembio.2140 |
[25] |
Porter, N.J., Mahendran, A., Breslow, R. and Christianson, D.W. (2017) Unusual Zinc-Binding Mode of HDAC6-Selective Hydroxamate Inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 114, 13459-13464. https://doi.org/10.1073/pnas.1718823114 |
[26] |
Ferreira de Freitas, R., Harding, R.J., Franzoni, I., Ravichandran, M., Mann, M.K., Ouyang, H., Lautens, M., Santhakumar, V., Arrowsmith, C.H. and Schapira, M. (2018) Identification and Structure-Activity Relationship of HDAC6 Zinc-Finger Ubiquitin Binding Domain Inhibitors. Journal of Medicinal Chemistry, 61, 4517-4527. https://doi.org/10.1021/acs.jmedchem.8b00258 |
[27] |
Harding, R.J., Ferreira de Freitas, R., Collins, P., Franzoni, I., Ravichandran, M., Ouyang, H., Juarez-Ornelas, K.A., Lautens, M., Schapira, M., von Delft, F., Santhakumar, V. and Arrowsmith, C.H. (2017) Small Molecule Antagonists of the Interaction between the Histone Deacetylase 6 Zinc-Finger Domain and Ubiquitin. Journal of Medicinal Chemistry, 60, 9090-9096. https://doi.org/10.1021/acs.jmedchem.7b00933 |
[28] |
Yoo, J., Kim, S.J., Son, D., Seo, H., Baek, S.Y., Maeng, C.Y., Lee, C., Kim, I.S., Jung, Y.H., Lee, S.M. and Park, H.J. (2016) Computer-Aided Identification of New Histone Deacetylase 6 Selective Inhibitor with Anti-Sepsis Activity. European Journal of Medicinal Chemistry, 116, 126-135. https://doi.org/10.1016/j.ejmech.2016.03.046 |