[1] |
Kandambeth, S., Dey, K. and Banerjee, R. (2019) Covalent Organic Frameworks: Chemistry beyond the Structure. Journal of the American Chemical Society, 141, 1807-1822. https://doi.org/10.1021/jacs.8b10334 |
[2] |
Segura, J.L., Mancheno, M.J. and Zamora, F. (2016) Covalent Organic Frameworks Based on Schiff-Base Chemistry: Synthesis, Properties and Potential Applications. Chemical Society Reviews, 45, 5635-5671. https://doi.org/10.1039/C5CS00878F |
[3] |
Huang, N., Wang, P. and Jiang, D. (2016) Covalent Organic Frameworks: A Mate-rials Platform for Structural and Functional Designs. Nature Reviews Materials, 1, Article No. 16068. https://doi.org/10.1038/natrevmats.2016.68 |
[4] |
Cote, A.P., Benin, A.I., Ockwig, N.W., O’keeffe, M., Matzger, A.J. and Yaghi, O.M. (2005) Porous, Crystalline, Covalent Organic Frameworks. Science, 310, 11661-1170. https://doi.org/10.1126/science.1120411 |
[5] |
Kuhn, P., Antonietti, M. and Thomas, A. (2008) Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis. Angewandte Chemie International Edition, 47, 3450-3453. https://doi.org/10.1002/anie.200705710 |
[6] |
Zhao, W., Qiao, J., Ning, T.L. and Liu, X.K. (2017) Scalable Ambient Pressure Synthesis of Covalent Organic Frameworks and Their Colorimetric Nanocomposites through Dynamic Imine Exchange Reactions. Chinese Journal of Polymer Science, 36, 1-7. https://doi.org/10.1007/s10118-018-2010-5 |
[7] |
Wei, H., Chai, S., Hu, N., Yang, Z., Wei, L. and Wang, L. (2015) The Microwave-Assisted Solvothermal Synthesis of a Crystalline Two-Dimensional Covalent Organic Framework with High CO2 Capacity. Chemical Communications, 51, 12178-12181. https://doi.org/10.1039/C5CC04680G |
[8] |
Biswal, B.P., Chandra, S., Kandambeth, S., Lukose, B., Heine, T. and Banerjee, R. (2013) Mechanochemical Synthesis of Chemically Stable Isoreticular Covalent Organic Frameworks. Journal of the American Chemical Society, 135, 5328-5331. https://doi.org/10.1021/ja4017842 |
[9] |
Peng, Y., Xu, G., Hu, Z., Cheng, Y., Chi, C., Yuan, D., et al. (2016) Mechanoassisted Synthesis of Sulfonated Covalent Organic Frameworks with High Intrinsic Proton Conductivity. ACS Applied Materials & Interfaces, 8, 18505-18512. https://doi.org/10.1021/acsami.6b06189 |
[10] |
Waller, P.J., Lyle, S., Os-born, P.T., Diercks, C.S., Reimer, J.A. and Yaghi, O.M. (2016) Chemical Conversion of Linkages in Covalent Organic Frameworks. Journal of the American Chemical Society, 138, 15519-15522. https://doi.org/10.1021/jacs.6b08377 |
[11] |
Karak, S., Kandambeth, S., Biswal, B.P., Sasmal, H.S., Kumar, S., Pachfule, P., et al. (2017) Constructing Ultraporous Covalent Organic Frameworks in Seconds via an Organic Terracotta Process. Journal of the American Chemical Society, 139, 1856-1862. https://doi.org/10.1021/jacs.6b08815 |
[12] |
Han, Y., Zhang, M., Zhang, Y. and Zhang, Z. (2018) Copper Immobilized at a Covalent Organic Framework: An Efficient and Recyclable Heterogeneous Catalyst for the Chan-Lam Coupling Reaction of Aryl Boronic Acids Andamines. Green Chemistry, 20, 4891-4900. https://doi.org/10.1039/C8GC02611D |
[13] |
Rabbani, M.G., Sekizkardes, A.K., Kahveci, Z., Reich, T.E., Ding, R. and El-Kaderi, H.M. (2013) A 2D Mesoporous Imine-Linked Covalent Organic Framework for High Pressure Gas Storage Applications. Chemistry, 19, 3324-3328. https://doi.org/10.1002/chem.201203753 |
[14] |
Li, Z., Feng, X., Zou, Y., Zhang, Y., Xia, H., Liu, X., et al. (2014) A 2D Az-ine-Linked Covalent Organic Framework for Gas Storage Applications. Chemical Communications, 50, 13825-13828. https://doi.org/10.1039/C4CC05665E |
[15] |
Ge, R., Hao, D., Shi, Q., Dong, B., Leng, W., Wang, C. and Gao, Y. (2016) Target Synthesis of an Azo (N═N) Based Covalent Organic Framework with High CO2-over-N2 Selectivity and Benign Gas Storage Capa-bility. Journal of Chemical & Engineering Data, 615, 1904-1909. https://doi.org/10.1021/acs.jced.6b00071 |
[16] |
Zou, C., Li, Q., Hua, Y., Zhou, B., Duan, J. and Jin, W. (2017) Mechanical Synthesis of COF Nanosheet Cluster and Its Mixed Matrix Membrane for Efficient CO2 Removal. ACS Applied Materials & Interfaces, 9, 29093-29100. https://doi.org/10.1021/acsami.7b08032 |
[17] |
Gao, Q., Li, X., Ning, G., Xu, H., Liu, C., Tian, B., Tang, W. and Kian, P.L. (2018) Covalent Organic Framework with Frustrated Bonding Network for Enhanced Carbon Dioxide Storage. Chemistry of Materials, 30, 1762-1768. https://doi.org/10.1021/acs.chemmater.8b00117 |
[18] |
Sharma, A., Babarao, R., Medhekar, NV. and Malani, A. (2018) Methane Adsorption and Separation in Slipped and Functionalized Covalent Organic Frameworks. Industrial & Engineering Chemistry Re-search, 57, 4767-4778. https://doi.org/10.1021/acs.iecr.7b05031 |
[19] |
Deblase, C.R., Silberstein, K.E., Truong, T.T., Abruna, H.D. and Dichtel, W.R. (2013) Beta-Ketoenamine-Kinked Covalent Organic Frameworks Capable of Pseudocapacitive Energy Storage. Journal of the American Chemical Society, 135, 16821-16824. https://doi.org/10.1021/ja409421d |
[20] |
Halder, A., Ghodh, M., Khayum, M.A., Bera, S., Addicaot, M., Sasmal, H.S., et al. (2018) Interlayer Hydrogen-Bonded Covalent Organic Frameworks as High-Performance Supercapacitors. Journal of the American Chemical Society, 140, 10941-10945. https://doi.org/10.1021/jacs.8b06460 |
[21] |
Xue, R., Guo, H., Yue, L., Wang, T., Wang, M., Li, Q., Liu, H. and Yang, W. (2018) Preparation and Energy Storage Application of a Long-Life and High Rate Performance Pseudocapacitive COF Material Linked with -NH- Bonds. New Journal of Chemistry, 42, 13726-13731. https://doi.org/10.1039/C8NJ01942H |
[22] |
Guo, H., Wang, M., Xue, R., Yao, J., Wang, X., Zhang, L., Liu, J. and Yang, W. (2019) A New COF Linked by an Ether Linkage (-O-): Synthesis, Characterization and Application in Supercapacitance. RSC Advances, 9, 13458-13464. https://doi.org/10.1039/C9RA01357A |
[23] |
Dding, S.Y., Gao, J., Wang, Q., Zhang, Y., Song, W.G., Su, C.Y., et al. (2011) Construction of Covalent Organic Framework for Catalysis: Pd/COF-LZU1 in Suzuki-Miyaura Coupling Reaction. Journal of the American Chemical Society, 133, 19816-19822. https://doi.org/10.1021/ja206846p |
[24] |
Bhadra, M., Sasmal, H.S., Basu, A., Midya, S.P., Kandambeth, S., et al. (2017) Predesigned Metal-Anchored Building Block for in Situ Generation of Pd Nanoparticles in Porous Covalent Organic Framework: Application in Heterogeneous Tandem Catalysis. ACS Applied Materials & Interfaces, 9, 13785-13792. https://doi.org/10.1021/acsami.7b02355 |
[25] |
Lu, S., Hu, Y., Wan, S., Mccaffrey, R., Jin, Y., Gu, H. and Zhang, W. (2017) Synthesis of Ultrafine and Highly Dispersed Metal Nanoparticles Confined in a Thioether-Containing Covalent Organic Framework and Their Catalytic Applications. Journal of the American Chemical Society, 139, 17082-17088. https://doi.org/10.1021/jacs.7b07918 |
[26] |
Yu, D., Gao, W., Xing, S., Lian, L., Zhang, H., Wang, X. and Lou, D. (2019) Fe-Doped H3PMo12O40 Immobilized on Covalent Organic Frameworks (Fe/PMA@COFs): A Heterogeneous Catalyst for the Epoxi-dation of Cyclooctene with H2O2. RSC Advances, 9, 4884-4891. https://doi.org/10.1039/C8RA10388G |
[27] |
Ghosh, S., Molla, R.A., Kayal, U., Bhaumik, A. and Islam, S.M. (2019) Ag NPs Decorated on a COF in the Presence of DBU as an Efficient Catalytic System for the Synthesis of Tetramic Acids via CO2 Fixation into Propargylic Amines at Atmospheric Pressure. Dalton Transactions, 48, 4657-4666. https://doi.org/10.1039/C9DT00017H |
[28] |
Vardhan, H., Verma, G., Ramani, S., Nafady, A., Al-Enizi, A.M., Pan, Y., Yang, Z., Yang, H. and Ma, S. (2019) Covalent Organic Framework Decorated with Vanadium as a New Platform for Prins Reaction and Sulfide Oxidation. ACS Applied Materials & Interfaces, 11, 3070-3079. https://doi.org/10.1021/acsami.8b19352 |
[29] |
Zhi, Y., Shao, P., Feng, X., Xia, H., Zhang, Y., Shi, Z., Mu, Y. and Liu, X. (2018) Covalent Organic Frameworks: Efficient, Metal-Free, Heterogeneous Organocatalysts for Chemical Fixation of CO2 under Mild Conditions. Journal of Materials Chemistry A, 6, 374-382. https://doi.org/10.1039/C7TA08629F |
[30] |
Hu, X., Long, Y., Fan, M., Yuan, M., Zhao, H., Ma, J. and Dong, Z. (2019) Two-Dimensional Covalent Organic Frameworks as Self-Template Derived Nitrogen-Doped Carbon Nanosheets for Eco-Friendly Metal-Free Catalysis. Applied Catalysis B: Environmental, 244, 25-35. https://doi.org/10.1016/j.apcatb.2018.11.028 |
[31] |
Lin, S., Diercks, C.S., Zhang, Y.-B., Kornienko, N., Nichols, E.M., Zhao, Y., et al. (2015) Covalent Organic Frameworks Comprising Cobalt Porphyrins for Catalytic CO2 Reduction in Water. Science, 349, 1208-1213. https://doi.org/10.1126/science.aac8343 |
[32] |
Liu, H.Y., Chu, J., Yin, Z.L., Cai, X., Zhuang, L. and Deng, H.X. (2019) Covalent Organic Frameworks Linked by Amine Bonding for Concerted Electrochemical Reduction of CO2. Chem, 4, 1696-1709. https://doi.org/10.1016/j.chempr.2018.05.003 |
[33] |
Mao, W., Yu, P., Ohsaka, T. and Mao, L. (2015) An Efficient Electrocatalyst for Oxygen Reduction Reaction Derived from a Co-Porphyrin-Based Covalent Organic Framework. Electrochemistry Communications, 52, 53-57. https://doi.org/10.1016/j.elecom.2015.01.021 |
[34] |
Zhao, X.J., Pachfule, P., Li, S., Langenhahn, T., Ye, M., Schlesiger, C., et al. (2019) Macro/Microporous Covalent Organic Frameworks for Efficient Electrocatalysis. Journal of the American Chemical Society, 141, 6623-6630. https://doi.org/10.1021/jacs.9b01226 |
[35] |
Ansari, M.B. and Park, S.E. (2012) Carbon Dioxide Utilization as a Soft Oxidant and Promoter in Catalysis. Energy & Environmental Science, 5, 9419-9437. https://doi.org/10.1039/c2ee22409g |
[36] |
Wang, C., Wang, Y., Ge, R., Song, X., Xing, X., Jiang, Q., et al. (2018) A 3D Covalent Organic Framework with Exceptionally High Iodine Capture Capability. Chemistry a European Journal, 24, 585-589. https://doi.org/10.1002/chem.201705405 |
[37] |
Ma, Y.X., Li, Z.J., Wei, L., Ding, S.Y., Zhang, Y.B. and Wang, W. (2017) A Dynamic Three-Dimensional Covalent Organic Framework. Journal of the American Chemical Society, 139, 4995-4998. https://doi.org/10.1021/jacs.7b01097 |
[38] |
Mitra, S., Kandambeth, S., Biswal, B.P., Khayum, M.A., Choudhury, C.K., Mehta, M., et al. (2016) Self-Exfoliated Guanidinium-Based Ionic Covalent Organic Nanosheets (iCONs). Journal of the American Chemical Society, 138, 2823-2828. https://doi.org/10.1021/jacs.5b13533 |
[39] |
Thote, J., Aiyappa, H.B., Deshpande, A., Diaz Diaz, D., Kurungot, S. and Banerjee, R. (2014) A Covalent Organic Framework-Cadmium Sulfide Hybrid as Aprototype Photocatalyst for Visible-Light-Driven Hydrogen Production. Chemistry, 20, 15961-15965. https://doi.org/10.1002/chem.201403800 |
[40] |
Schwinghammer, K., Tuffy, B., Mesch, M.B., Wirnhier, E., Martineau, C., Taulelle, F., et al. (2013) Triazine-Based Carbon Nitrides for Visible-Light-Driven Hydrogen Evolution. Angewandte Chemie Inter-national Edition, 52, 2435-2439. https://doi.org/10.1002/anie.201206817 |
[41] |
Zhang, J., Chen, X., Takanabe, K., Maeda, K., Domen, K., Epping, J.D., et al. (2010) Synthesis of a Carbon Nitride Structure for Visible-Light Catalysis by Copolymerization. Angewandte Chemie International Edition, 49, 441-444. https://doi.org/10.1002/anie.200903886 |
[42] |
Fu, Y., Zhu, X., Huang, L., Zhang, X., Zhang, F. and Zhu, W. (2018) Azine-Based Covalent Organic Frameworks as Metal-Free Visible Light Photocatalysts for CO2 Reduction with H2O. Applied Catalysis B: Environmental, 239, 46-51. https://doi.org/10.1016/j.apcatb.2018.08.004 |
[43] |
Zhong, W., Sa, R., Li, L., He, Y., Li, L., Bi, J., Zhuang, Z., Yu, Y. and Zou, Z. (2019) A Covalent Organic Framework Bearing Single Ni Sites as a Synergistic Photocatalyst for Selective Photoreduction of CO2 to CO. Journal of the American Chemical Society, 141, 7615-7621. https://doi.org/10.1021/jacs.9b02997 |
[44] |
Li, W., Yang, C. and Yan, X. (2017) A Versatile Covalent Organic Framework-Based Platform for Sensing Biomolecules. Chemical Communications, 53, 11469-11471. https://doi.org/10.1039/C7CC06244C |
[45] |
Peng, Y., Huang, Y., Zhu, Y., Chen, B., Wang, L., Lai, Z., et al. (2017) Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in Highly Sensitive and Selective DNA Detection. Journal of the American Chemical Society, 139, 8698-8704. https://doi.org/10.1021/jacs.7b04096 |
[46] |
Wang, M., Hu, M., Liu, J., Guo, C., Peng, D., Jia, Q., He, L., Zhang, Z. and Du, M. (2019) Covalent Organic Framework-Based Electrochemical Aptasensors for the Ultrasensitive Detection of Antibiotics. Biosensors & Bioelectronics, 132, 8-16. https://doi.org/10.1016/j.bios.2019.02.040 |
[47] |
Wu, X., Han, X., Xu, Q., Liu, Y., Yuan, C., Yang, S., Liu, Y., Jiang, J. and Cui, Y. (2019) Chiral BINOL-Based Covalent Organic Frameworks for Enantioselective Sensing. Journal of the American Chemical Society, 141, 7081-7089. https://doi.org/10.1021/jacs.9b02153 |