[1] |
Kim, J., Kim, J.I., Na, Y.K., et al. (2011) Intra-Renal Slow Cell-Cycle Cells Contribute to the Restoration of Kidney Tubules Injured by Ischemia/Reperfusion. Anatomy & Cell Biology, 44, 186-193. https://doi.org/10.5115/acb.2011.44.3.186 |
[2] |
Huang, Y., Lu, S.F., Hu, C.J., et al. (2014) Electro-Acupuncture at Neiguan Pretreatment Alters Genome-Wide Gene Expressions and Protects Rat Myocardium against Ische-mia-Reperfusion. Molecules, 19, 16158-16178. https://doi.org/10.3390/molecules191016158 |
[3] |
Groenendaal, F., Shadid, M., McGowan, J.E., et al. (2000) Ef-fects of Deferoxamine, a Chelator of Free Iron, on NA(+), K(+)-ATPase Activity of Cortical Brain Cell Membrane during Early Reperfusion after Hypoxia-Ischemia in Newborn Lambs. Pediatric Research, 48, 560-564. https://doi.org/10.1203/00006450-200010000-00023 |
[4] |
Babsky, A.M., Topper, S., Zhang, H., et al. (2008) Evaluation of Extra- and Intracellular Apparent Diffusion Coefficient of Sodium in Rat Skeletal Muscle: Effects of Prolonged Ischemia. Magnetic Resonance in Medicine, 59, 485-491. https://doi.org/10.1002/mrm.21568 |
[5] |
Beller, G.A., Conroy, J. and Smith, T.W. (1976) Ischemia-Induced Al-terations in Myocardial (Na+ + K+)-ATPase and Cardiac Glycoside Binding. Journal of Clinical Investigation, 57, 341-350. https://doi.org/10.1172/JCI108285 |
[6] |
Aufricht, C., Bidmon, B., Ruffingshofer, D., et al. (2002) Is-chemic Conditioning Prevents Na,K-ATPase Dissociation from the Cytoskeletal Cellular Fraction after Repeat Renal Ischemia in Rats. Pediatric Research, 51, 722-727. https://doi.org/10.1203/00006450-200206000-00010 |
[7] |
Alves, D.S., Thulin, G., Loffing, J., et al. (2015) Akt Substrate of 160 kD Regulates Na+,K+-ATPase Trafficking in Response to Energy Depletion and Renal Ischemia. Journals of the American Society of Nephrology, 26, 2765-2776. https://doi.org/10.1681/ASN.2013101040 |
[8] |
Zhuang, M., Fang, Y., Wu, L.R., et al. (2008) Protective Effects of Metallothionein Induced by Dexamethasone against Ischemia/Reperfusion Injury of Myocardium of Isolated Rat Heart. Chinese Critical Care Medicine, 20, 223-226. |
[9] |
You, Y., Hirsch, D.J. and Morgunov, N.S. (1992) Functional Integrity of Proximal Tubule Cells. Effects of Hypoxia and Ischemia. Journal of the American Society of Nephrology, 3, 965-974. |
[10] |
Ye, T.M., Qian, L.B., Cui, J., et al. (2010) Auricularia Auricular Polysaccharide Protects Myocardium against Ischemia/Reperfusion Injury. Chinese Journal of Applied Physiology, 26, 154-158. |
[11] |
Yano, K., Maruyama, T., Makino, N., et al. (1993) Effects of Amiloride on the Mechanical, Electrical and Biochemical Aspects of Ischemia-Reperfusion Injury. Molecular and Cellular Biochemistry, 121, 75-83. https://doi.org/10.1007/BF00928702 |
[12] |
Yan, J., Yang, X.F., Yi, S.X., et al. (2007) Effect of Electroacupuncture of “Neiguan” (PC 6) on Na+-K+-ATPase Activity and Its Gene Expression in Cardiocyte Membrane in Rats with My-ocardial Ischemia-Reperfusion Injury. Acupuncture Research, 32, 296-300. |
[13] |
Woroniecki, R., Ferdinand, J.R., Morrow, J.S., et al. (2003) Dissociation of Spectrin-Ankyrin Complex as a Basis for Loss of Na-K-ATPase Polarity after Ischemia. American Journal of Physiology-Renal Physiology, 284, F358-F364. https://doi.org/10.1152/ajprenal.00100.2002 |
[14] |
Wang, Z.W., Liu, Y.Q., Zhao, B., et al. (2014) Effect of JTS Caps. Treating Cerebral Ischemia on Metabolism and Antioxidant System in Cerebral Ischemia Rat. Chinese Journal of Applied Physiology, 30, 115-118. |
[15] |
Yin, X., Wang, X., Fan, Z., et al. (2015) Hyperbaric Oxygen Preconditioning Attenuates Myocardium Ischemia-Reper- fusion Injury through Upregulation of Heme Oxygenase 1 Expression: PI3K/Akt/Nrf2 Pathway Involved. Journal of Cardiovascular Pharmacology and Therapeutics, 20, 428-438. https://doi.org/10.1177/1074248414568196 |
[16] |
Yang, Q., Yang, K., Li, A., et al. (2013) Anti-Apoptosis and Expression of microRNA-21 in Rat Myocardium during Early Ischemia-Reperfusion Injury. Journal of Central South University. Medical Sciences, 38, 483-489. |
[17] |
Zhang, X., et al. (2004) Protective Effect of Ulinastatin against Is-chemia-Reperfusion Injury in Rat Small Bowel Transplantation. Transplantation Proceedings, 36, 1564-1566. https://doi.org/10.1016/j.transproceed.2004.05.059 |
[18] |
Turkozkan, N., Bilighan, A., Cayci, B., et al. (1996) The Effects of 2-Chloroadenosine and Deoxycoformycin on the ATP Level, Na-K ATPase Activity in Experimental Brain Ischemia of Gerbil. Neurological Research, 18, 345-348. https://doi.org/10.1080/01616412.1996.11740434 |
[19] |
Tiwari, M., Hemalatha, T., Ganesan, K., et al. (2008) Myocardial Ischemia and Reperfusion Injury in Rats: Lysosomal Hydrolases and Matrix Metalloproteinases Mediated Cellular Damage. Molecular and Cellular Biochemistry, 312, 81-91. https://doi.org/10.1007/s11010-008-9723-7 |
[20] |
Villa, R.F., Gorini, A. and Hoyer, S. (2002) ATPases of Synaptic Plasma Membranes from Hippocampus after Ischemia and Recovery during Ageing. Neurochemical Research, 27, 861-870. https://doi.org/10.1023/A:1020381829107 |
[21] |
Vicencio, J.M., Yellon, D.M., Sivaraman, V., et al. (2015) Plasma Exosomes Protect the Myocardium from Ischemia-Reperfusion Injury. Journal of the American College of Cardiology, 65, 1525-1236. https://doi.org/10.1016/j.jacc.2015.02.026 |
[22] |
Vatner, D.E., Knight, D.R., Shen, Y.T., et al. (1988) One Hour of Myocardial Ischemia in Conscious Dogs Increases Beta-Adrenergic Receptors, But Decreases Adenylate Cyclase Ac-tivity. Journal of Molecular and Cellular Cardiology, 20, 75-82. https://doi.org/10.1016/S0022-2828(88)80180-9 |
[23] |
Tanaka, E., Uchikado, H., Niiyama, S., et al. (2002) Extru-sion of Intracellular Calcium Ion after in Vitro Ischemia in the Rat Hippocampal CA1 Region. Journal of Neurophysi-ology, 88, 879-887. https://doi.org/10.1152/jn.2002.88.2.879 |
[24] |
Szekeres, L. (2005) Drug-Induced Delayed Cardiac Protection against the Effects of Myocardial Ischemia. Pharmacology & Therapeutics, 108, 269-280. https://doi.org/10.1016/j.pharmthera.2005.04.007 |
[25] |
Suh, J.G., An, S.J., Park, J.B., et al. (2002) Transcortical Alterations in Na(+)-K+ ATPase and Microtubule-Associated Proteins Immunoreactivity in the Rat Cortical Atrophy Model Induced by Hypoxic Ischemia. Neural Plasticity, 9, 135-146. https://doi.org/10.1155/NP.2002.135 |
[26] |
Stanimirovic, D.B., Ball, R. and Durkin, J.P. (1997) Stimulation of Glutamate Uptake and Na,K-ATPase Activity in Rat Astrocytes Exposed to Ischemia-Like Insults. Glia, 19, 123-134. https://doi.org/10.1002/(SICI)1098-1136(199702)19:2<123::AID-GLIA4>3.0.CO;2-1 |
[27] |
Soumya, R.S., Vineetha, V.P., Salin Raj, P., et al. (2014) Beneficial Properties of Selenium Incorporated Guar Gum Nanoparticles against Ischemia/Reperfusion in Cardiomyoblasts (H9c2). Metallomics, 6, 2134-2147. https://doi.org/10.1039/C4MT00241E |
[28] |
Song, W., Fu, J., Jia, X., et al. (2002) Changes of ATPase in Fetal Rat’s Cerebral Mitochondria and Endoplasmic Reticulum Subsequent Intrauterus Ischemia and Hypoxia. Chinese Journal of Obstetrics and Gynecology, 37, 146-148. |
[29] |
Smith, N.C. and Levi, R. (1999) LLC-PK(1) Cells Stably Expressing the Human Norepinephrine Transporter: A Functional Model of Carrier-Mediated Norepinephrine Release in Protracted Myocardial Ischemia. Journal of Pharmacology and Experimental Therapeutics, 291, 456-463. |
[30] |
Bergmann, I., Szabanowski, T., Brauer, A., et al. (2015) Remifentanil Added to Sufentanil-Sevoflurane Anesthesia Suppresses Hemodynamic and Metabolic Stress Responses to Intense Surgical Stimuli More Effectively than High-Dose Sufentanil-Sevoflurane Alone. BMC Anesthesiology, 15, 3. https://doi.org/10.1186/1471-2253-15-3 |
[31] |
Zhang, Y., Zhang, L., Gu, E., et al. (2016) Long-Term Insulin Treatment Restores Cardioprotection Induced by Sufentanil Postconditioning in Diabetic Rat Heart. Experimental Biology and Medicine (Maywood), 241, 650-657. https://doi.org/10.1177/1535370215622706 |
[32] |
Wu, Q.L., Shen, T., Ma, H., et al. (2012) Sufentanil Postcondi-tioning Protects the Myocardium from Ischemia-Reperfu- sion via PI3K/Akt-GSK-3beta Pathway. Journal of Surgical Research, 178, 563-570. https://doi.org/10.1016/j.jss.2012.05.081 |