[1] |
Amunts, K., Schlaug, G., Jäncke, L., Steinmetz, H., Schleicher, A., Dabringhaus, A., & Zilles, K. (1997). Motor Cortex and Hand Motor Skills: Structural Compliance in the Human Brain. Human Brain Mapping, 5, 206-215. https://doi.org/10.1002/(SICI)1097-0193(1997)5:3<206::AID-HBM5>3.0.CO;2-7 |
[2] |
Bailey, J. A., & Penhune, V. B. (2010). Rhythm Synchronization Performance and Auditory Working Memory in Early- and Late-Trained Musicians. Experimental Brain Research, 204, 91-101. https://doi.org/10.1007/s00221-010-2299-y |
[3] |
Barrett, K. C., Ashley, R., Strait, D. L., & Kraus, N. (2013). Art and Science: How Musical Training Shapes the Brain. Frontiers in Psychology, 4, 713. https://doi.org/10.3389/fpsyg.2013.00713 |
[4] |
Boyke, J., Driemeyer, J., Gaser, C., Büchel, C., & May, A. (2008). Training-Induced Brain Structure Changes in the Elderly. Journal of Neuroscience, 28, 7031-7035. https://doi.org/10.1523/JNEUROSCI.0742-08.2008 |
[5] |
Chandrasekaran, B., & Kraus, N. (2010). The Scalp-Recorded Brainstem Response to Speech: Neural Origins and Plasticity. Psychophysiology, 47, 236-246. https://doi.org/10.1111/j.1469-8986.2009.00928.x |
[6] |
Claudia, L., Herholz, S. C., Trainor, L. J., & Christo, P. (2008). Cortical Plasticity Induced by Short-Term Unimodal and Multimodal Musical Training. Journal of Neuroscience, 28, 9632-9639. https://doi.org/10.1523/JNEUROSCI.2254-08.2008 |
[7] |
Dahmen, J. C., & King, A. J. (2007). Learning to Hear: Plasticity of Auditory Cortical Processing. Current Opinion in Neurobiology, 17, 456-464. https://doi.org/10.1016/j.conb.2007.07.004 |
[8] |
Doyon, J., Bellec, P. R., Penhune, V., Monchi, O., Carrier, J., Lehericy, S., & Benali, H. (2009). Contributions of the Basal Ganglia and Functionally Related Brain Structures to Motor Learning. Behavioural Brain Research, 199, 61-75. https://doi.org/10.1016/j.bbr.2008.11.012 |
[9] |
Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased Cortical Representation of the Fingers of the Left Hand in String Players. Science, 270, 305. https://doi.org/10.1126/science.270.5234.305 |
[10] |
Gogtay, N., & Thompson, P. M. (2010). Mapping Gray Matter Development: Implications for Typical Development and Vulnerability to Psychopathology. Brain & Cognition, 72, 6-15. https://doi.org/10.1016/j.bandc.2009.08.009 |
[11] |
Habibi, A., Cahn, B. R., Damasio, A., & Damasio, H. (2016). Neural Correlates of Accelerated Auditory Processing in Children Engaged in Music Training. Developmental Cognitive Neuroscience, 21, 1-14. https://doi.org/10.1016/j.dcn.2016.04.003 |
[12] |
Herdener, M., Esposito, F., Salle, F. D., Boller, C., Hilti, C. C., Habermeyer, B., & Cattapanludewig, K. (2010). Musical Training Induces Functional Plasticity in Human Hippocampus. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 30, 1377-1384. https://doi.org/10.1523/JNEUROSCI.4513-09.2010 |
[13] |
Hyde, K. L., Jason, L., Andrea, N., Marie, F., Ellen, W., Evans, A. C., & Gottfried, S. (2009). Musical Training Shapes Structural Brain Development. Journal of Neuroscience, 29, 3019-3025. https://doi.org/10.1523/JNEUROSCI.5118-08.2009 |
[14] |
Klein, C., Liem, F., Hänggi, J., Elmer, S., & Jäncke, L. (2016). The “Silent” Imprint of Musical Training. Human Brain Mapping, 37, 536-546. https://doi.org/10.1002/hbm.23045 |
[15] |
Knudsen, E. (2004). Sensitive Periods in the Development of the Brain and Behavior. Journal of Cognitive Neuroscience, 16, 1412-1425. https://doi.org/10.1162/0898929042304796 |
[16] |
Lotze, M., Scheler, G., Tan, H. R. M., Braun, C., & Birbaumer, N. (2003). The Musician’s Brain: Functional Imaging of Amateurs and Professionals during Performance and Imagery. Neuroimage, 20, 1817-1829. https://doi.org/10.1016/j.neuroimage.2003.07.018 |
[17] |
Nitin, G., Giedd, J. N., Leslie, L., Hayashi, K. M., Deanna, G., A Catherine, V., Toga, A. W. et al. (2004). Dynamic Mapping of Human Cortical Development during Childhood through Early Adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101, 8174-8179. https://doi.org/10.1073/pnas.0402680101 |
[18] |
Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., & Hoke, M. (1998). Increased Auditory Cortical Representation in Musicians. Nature, 392, 811-814. https://doi.org/10.1038/33918 |
[19] |
Patrick, B., Lerch, J. P., Evans, A. C., & Zatorre, R. J. (2009). Neuroanatomical Correlates of Musicianship as Revealed by Cortical Thickness and Voxel-Based Morphometry. Cerebral Cortex, 19, 1583. https://doi.org/10.1093/cercor/bhn196 |
[20] |
René, W., Eileen, L., Karsten, S., Ofte, S. H., Toga, A. W., Thompson, P. M., Kenneth, H. et al. (2011). Structural and Functional Reorganization of the Corpus Callosum between the Age of 6 and 8 Years. Cerebral Cortex, 21, 1012. https://doi.org/10.1093/cercor/bhq165 |
[21] |
Schlaug, G. (2001). The Brain of Musicians. Annals of the New York Academy of Sciences, 930, 281-299. https://doi.org/10.1111/j.1749-6632.2001.tb05739.x |
[22] |
Skoe, E., Krizman, J., & Kraus, N. (2013). The Impoverished Brain: Disparities in Maternal Education Affect the Neural Response To sound. Journal of Neuroscience, 33(44), 17221-17231. https://doi.org/10.1523/JNEUROSCI.2102-13.2013 |
[23] |
Skoe, E., Krizman, J., Anderson, S., & Kraus, N. (2015). Stability and Plasticity of Auditory Brainstem Function across the Lifespan. Cerebral Cortex, 25, 1415. https://doi.org/10.1093/cercor/bht311 |
[24] |
Steele, C. J., Bailey, J. A., Zatorre, R. J., & Penhune, V. B. (2013). Early Musical Training and White-Matter Plasticity in the Corpus Callosum: Evidence for a Sensitive Period. Journal of Neu-roscience the Official Journal of the Society for Neuroscience, 33, 1282. https://doi.org/10.1523/JNEUROSCI.3578-12.2013 |
[25] |
Strait, D. L., & Kraus, N. (2014). Biological Impact of Auditory Expertise across the Life Span: Musicians as a Model of Auditory Learning. Hearing Research, 308, 109-121. https://doi.org/10.1016/j.heares.2013.08.004 |
[26] |
Strait, D. L., Kraus, N., Parbery-Clark, A., & Ashley, R. (2010). Musical Experience Shapes Top-Down Auditory Mechanisms: Evidence from Masking and Auditory Attention Performance. Hearing Research, 261, 22-29. https://doi.org/10.1016/j.heares.2009.12.021 |
[27] |
Tarasenko, M., Perez, V. B., Pianka, S. T., Vinogradov, S., Braff, D. L., Swerdlow, N. R., & Light, G. A. (2016). Measuring the Capacity for Auditory System Plasticity: An Examination of Performance Gains during Initial Exposure to Auditory-Targeted Cognitive Training in Schizophrenia. Schizophrenia Research, 172, 123. https://doi.org/10.1016/j.schres.2016.01.019 |
[28] |
Trainor, L. J. (2005). Are There Critical Periods for Musical De-velopment? Developmental Psychobiology, 46, 262-278. https://doi.org/10.1002/dev.20059 |
[29] |
Vaquero, L., Hartmann, K., Ripollés, P., Rojo, N., Sierpowska, J., François, C., & Samii, A. (2016). Structural Neuroplasticity in Expert Pianists Depends on the Age of Musical Training Onset. Neuroimage, 126, 106-119. https://doi.org/10.1016/j.neuroimage.2015.11.008 |
[30] |
Werker, J. F., & Tees, R. C. (2010). Speech Perception as a Window for Understanding Plasticity and Commitment in Language Systems of the Brain. Developmental Psychobiology, 46, 233-251. https://doi.org/10.1002/dev.20060 |
[31] |
Wong, P. C. M., Erika, S., Russo, N. M., Tasha, D., & Nina, K. (2007). Musical Experience Shapes Human Brainstem Encoding of Linguistic Pitch Patterns. Nature Neuroscience, 10, 420-422. https://doi.org/10.1038/nn1872 |
[32] |
Zatorre, R. J. (2013). Predispositions and Plasticity in Music and Speech Learning: Neural Correlates and Implications. Science, 342, 585-589. https://doi.org/10.1126/science.1238414 |