[1] |
Olah, G.A., Prakash, G.K. and Goeppert, A. (2011) Anthropogenic Chemical Carbon Cycle for a Sustainable Future. Journal of the American Chemical Society, 133, 12881-12898. https://doi.org/10.1021/ja202642y |
[2] |
Wei, J., Ge, Q., Yao, R., Wen, Z., Fang, C., Guo, L., Xu, H. and Sun, J. (2017) Directly Converting CO2 into a Gasoline Fuel. Nature Communications, 8, 15174. https://doi.org/10.1038/ncomms15174 |
[3] |
Yang, H., Zhang, C., Gao, P., Wang, H., Li, X., Zhong, L., Wei, W. and Sun, Y. (2017) A Review of the Catalytic Hydrogenation of Carbon Di-oxide into Value-Added Hydrocarbons. Catalysis Science & Technology, 7, 4580-4598. https://doi.org/10.1039/C7CY01403A |
[4] |
Li, W., Wang, H., Jiang, X., Zhu, J., Liu, Z., Guo, X. and Song, C. (2018) A Short Review of Recent Advances in CO2 Hydrogenation to Hydrocarbons over Heterogeneous Catalysts. RSC Advances, 8, 7651-7669. https://doi.org/10.1039/C7RA13546G |
[5] |
Havran, V., Duduković, M.P. and Lo, C.S. (2011) Conversion of Methane and Carbon Dioxide to Higher Value Products. Industrial & Engineering Chemistry Research, 50, 7089-7100. https://doi.org/10.1021/ie2000192 |
[6] |
Guo, L.S., Sun, J., Ge, Q.J. and Tsubaki, N. (2018) Recent Advances in Direct Catalytic Hydrogenation of Carbon Dioxide to Valuable C2+ Hydrocarbons. Journal of Materials Chemistry A, 6, 23244-23262. https://doi.org/10.1039/C8TA05377D |
[7] |
Wang, L.X., Wang, L., Liu, X.L., Wang, H., Zhang, W., Yang, Q., Xiao, F.S., et al. (2018) Selective Hydrogenation of CO2 into Ethanol over Cobalt Catalysts. Angewandte Chemie International Edition, 57, 6104-6108. https://doi.org/10.1002/anie.201800729 |
[8] |
Wang, L., He, S., Wang, L., Lei, Y., Meng, X. and Xiao, F.-S. (2019) Cobalt-Nickel Catalysts for Selective Hydrogenation of Carbon Dioxide into Ethanol. ACS Catalysis, 9, 11335-11340. https://doi.org/10.1021/acscatal.9b04187 |
[9] |
He, Z.H., Qian, Q.L., Ma, J., Meng, Q.L., Zhou, H.C., Song, J.L. and Han, B.X. (2016) Water-Enhanced Synthesis of Higher Alcohols from CO2 Hydrogenation over a Pt/Co3O4 Catalyst under Milder Conditions. Angewandte Chemie International Edition, 55, 737-741. https://doi.org/10.1002/anie.201507585 |
[10] |
An, B., Li, Z., Song, Y., Zhang, J., Zeng, L., Wang, C. and Lin, W. (2019) Cooperative Copper Centres in a Metal-Organic Framework for Selective Conversion of CO2 to Ethanol. Nature Catalysis, 2, 709-717. https://doi.org/10.1038/s41929-019-0308-5 |
[11] |
Satthawong, R., Koizumi, N. and Prasassarakich, P. (2013) Bimetallic Fe-Co Catalysts for CO2 Hydrogenation to Higher Hydrocarbons. Journal of CO2 Utilization, 3-4, 102-106. https://doi.org/10.1016/j.jcou.2013.10.002 |
[12] |
Kangvansura, P., Chew, L.M., Kongmark, C., Santawaja, P., Ruland, H., Xia, W., Schulz, H., Worayingyong, A. and Muhler, M. (2017) Effects of Potassium and Manganese Promoters on Nitrogen-Doped Carbon Nanotube-Supported Iron Catalysts for CO2 Hydrogenation. Engineering, 3, 385-392. https://doi.org/10.1016/J.ENG.2017.03.013 |
[13] |
Gao, Y.N., Liu, S.Z., Zhao, Z.Q., Tao, H.C. and Sun, Z.Y. (2018) Heterogeneous Catalysis of CO2 Hydrogenation to C2+ Products. Acta Physico-Chimica Sinica, 34, 858-872. |
[14] |
Guo, L., Sun, J., Ji, X., Wen, Z., Yao, R., Xu, H. and Ge, Q. (2018) Directly Converting Carbon Dioxide to Linear α-Olefins on Bio-Promoted Catalysts. Communications Chemistry, 1, 1-8. https://doi.org/10.1038/s42004-018-0012-4 |
[15] |
Gao, P., Li, S., Bu, X., Dang, S., Liu, Z., Wang, H., Zhong, L., Qiu, M., Yang, C., Cai, J., Wei, W. and Sun, Y. (2017) Direct Conversion of CO2 into Liquid Fuels with High Se-lectivity over a Bifunctional Catalyst. Nature Chemistry, 9, 1019-1024. https://doi.org/10.1038/nchem.2794 |
[16] |
Li, Z., Qu, Y., Wang, J., Liu, H., Li, M., Miao, S. and Li, C. (2019) Highly Selective Conversion of Carbon Dioxide to Aromatics over Tandem Catalysts. Joule, 3, 570-583. https://doi.org/10.1016/j.joule.2018.10.027 |
[17] |
Gao, P., Dang, S., Li, S., Bu, X., Liu, Z., Qiu, M., Yang, C., Wang, H., Zhong, L., Han, Y., Liu, Q., Wei, W. and Sun, Y. (2017) Direct Production of Lower Olefins from CO2 Conversion via Bifunctional Catalysis. ACS Catalysis, 8, 571-578. https://doi.org/10.1021/acscatal.7b02649 |
[18] |
Liu, X., Wang, M., Zhou, C., Zhang, Q., Deng, W. and Wang, Y. (2018) Selective Transformation of Carbon Dioxide into Lower Olefins with a Bifunctional Catalyst Composed of ZnGa2O4 and SAPO-34. Chemical Communications, 54, 140-143. https://doi.org/10.1039/C7CC08642C |
[19] |
Li, Z., Wang, J., Qu, Y., Liu, H., Tang, C., Miao, S., Feng, Z., An, H. and Li, C. (2017) Highly Selective Conversion of Carbon Dioxide to Lower Olefins. ACS Catalysis, 7, 8544-8548. https://doi.org/10.1021/acscatal.7b03251 |
[20] |
Wang, G., Wang, Y., Cao, J., Wang, X., Yi, Y. and Liu, F. (2020) Fabrication of ZnZrO2@Al2O3@SAPO-34 Tandem Catalyst for CO2 Conversion to Hydrocarbons. Microporous and Mesoporous Materials, 291, Article ID: 109693. https://doi.org/10.1016/j.micromeso.2019.109693 |