[1] |
Andreas, K., Florian, H., Marc-Oliver, G., Edgar, K., & Günther, P. (2012). Does Spike-Timing-Dependent Synaptic Plastic-ity Couple or Decouple Neurons Firing in Synchrony? Frontiers in Computational Neuroscience, 6, 55. https://doi.org/10.3389/fncom.2012.00055 |
[2] |
Angelakis, E., Stathopoulou, S., Frymiare, J. L., Green, D. L., & Kounios, J. (2007). EEG Neurofeedback: A Brief Overview and an Example of Peak Alpha Frequency Training for Cog-nitive Enhancement in the Elderly. The Clinical Neuropsychologist, 21, 110-129. https://doi.org/10.1080/13854040600744839 |
[3] |
Arns, M., De Ridder, S., Strehl, U., Breteler, M., & Coenen, A. (2009). Efficacy of Neurofeedback Treatment in ADHD: The Effects on Inattention, Impulsivity and Hyperactivity: A Meta-Analysis. Clinical EEG & Neuroscience, 40, 180-189. https://doi.org/10.1177/155005940904000311 |
[4] |
Arns, M., Feddema, I., & Kenemans, J. L. (2014). Differential Effects of Theta/Beta and SMR Neurofeedback in ADHD on Sleep Onset Latency. Frontiers in Human Neuroscience, 8, 1019. https://doi.org/10.3389/fnhum.2014.01019 |
[5] |
Arns, M., Heinrich, H., & Strehl, U. (2014). Evaluation of Neurofeedback in ADHD: The Long and Winding Road. Biological Psychology, 95, 108-115. https://doi.org/10.1016/j.biopsycho.2013.11.013 |
[6] |
Basta, D., Rossi-Izquierdo, M., Soto-Varela, Andrés, Greters, M. E., Bittar, R. S., Steinhagen-Thiessen, E. et al. (2011). Efficacy of a Vibrotactile Neurofeedback Training in Stance and Gait Conditions for the Treatment of Balance Deficits. Otology & Neurotology, 32, 1492-1499. https://doi.org/10.1097/MAO.0b013e31823827ec |
[7] |
Beatty, J., & Legewie, H. (1977). Biofeedback and Behavior. New York: Plenum Press. https://doi.org/10.1007/978-1-4684-2526-0 |
[8] |
Brunner, C., Scherer, R., Graimann, B., Supp, G., & Pfurtscheller, G. (2006). Online Control of a Brain-Computer Interface Using Phase Synchronization. IEEE Transactions on Biomedical Engineering, 53, 2501-2506. https://doi.org/10.1109/TBME.2006.881775 |
[9] |
Carpenter, S. K., Cepeda, N. J., Rohrer, D., Kang, S. H. K., & Pashler, H. (2012). Using Spacing to Enhance Diverse Forms of Learning: Review of Recent Research and Implications for Instruction. Educational Psychology Review, 24, 369-378. https://doi.org/10.1007/s10648-012-9205-z |
[10] |
Coben, R. (2007). Connectivity-Guided Neurofeedback for Autistic Spectrum Disorder. Biofeedback. https://doi.org/10.1300/J184v11n01_02 |
[11] |
De Vos, M., Kroesen, M., Emkes, R., & Debener, S. (2014). P300 Speller BCI with a Mobile EEG System: Comparison to a Traditional Amplifier. Journal of Neural Engineering, 11, Ar-ticle ID: 036008. https://doi.org/10.1088/1741-2560/11/3/036008 |
[12] |
Dempster, T., & Vernon, D. (2009). Identifying Indices of Learning for Alpha Neurofeedback Training. Applied Psychophysiology & Biofeedback, 34, 309-318. https://doi.org/10.1007/s10484-009-9112-3 |
[13] |
Doesburg, S. M., Green, J. J., Mcdonald, J. J., & Ward, L. M. (2009). Rhythms of Consciousness: Binocular Rivalry Reveals Large-Scale Oscillatory Network Dynamics Mediating Visual Perception. PLoS ONE, 4, e6142. https://doi.org/10.1371/journal.pone.0006142 |
[14] |
Egner, T., & Gruzelier, J. H. (2001). Learned Self-Regulation of EEG Frequency Components Affects Attention and Event-Related Brain Potentials in Humans. Neuroreport, 12, 4155-4159. https://doi.org/10.1097/00001756-200112210-00058 |
[15] |
Egner, T., & Gruzelier, J. H. (2004). Eeg Biofeedback of Low Beta Band Components: Frequency-Specific Effects on Variables of Attention and Event-Related Brain Potentials. Clinical Neurophysiology, 115, 131-139. https://doi.org/10.1016/S1388-2457(03)00353-5 |
[16] |
Enriquez-Geppert, S., Huster, R. J., & Herrmann, C. S. (2013). Boosting Brain Functions: Improving Executive Functions with Behavioral Training, Neurostimulation, and Neurofeedback. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 88, 1-16. https://doi.org/10.1016/j.ijpsycho.2013.02.001 |
[17] |
Fazli, S., Mehnert, J., Steinbrink, J., Curio, G., Villringer, A., Klaus-Robert, M. et al. (2012). Enhanced Performance by A Hybrid NIRS-EEG Brain Computer Interface. NeuroImage, 59, 519-529. https://doi.org/10.1016/j.neuroimage.2011.07.084 |
[18] |
Fernández, T., Herrera, W., Harmony, T., Díaz-Comas, L., & Valdés, R. (2003). EEG and Behavioral Changes Following Neurofeedback Treatment in Learning Disabled Children. Clinical EEG (Electroencephalography), 34, 145-152. https://doi.org/10.1177/155005940303400308 |
[19] |
Fetz, E. E. (2007). Volitional Control of Neural Activity: Impli-cations for Brain-Computer Interfaces. The Journal of Physiology, 579, 571-579. https://doi.org/10.1113/jphysiol.2006.127142 |
[20] |
Fries, P. (2005). A Mechanism for Cognitive Dynamics: Neuronal Communication through Neuronal Coherence. Trends in Cognitive Sciences, 9, 474-480. https://doi.org/10.1016/j.tics.2005.08.011 |
[21] |
Fuchs, T., Birbaumer, N., Lutzenberger, W., Gruzelier, J. H., & Kaiser, J. (2003). Neurofeedback Treatment for Attention-Deficit/Hyperactivity Disorder in Children: A Comparison with Methylphenidate. Applied Psychophysiology and Biofeedback, 28, 1-12. https://doi.org/10.1023/A:1022353731579 |
[22] |
Gruart, A., Leal-Campanario, R., López-Ramos, J. C., & Delga-do-García, J. M. (2015). Functional Basis of Associative Learning and Its Relationships with Long-Term Potentiation Evoked in the Involved Neural Circuits: Lessons from Studies in Behaving Mammals. Neurobiology of Learning and Memory, 124, 3-18. https://doi.org/10.1016/j.nlm.2015.04.006 |
[23] |
Gruzelier, J. H. (2014a). EEG-Neurofeedback for Optimising Performance. I: A Review of Cognitive and Affective Outcome in Healthy Participants. Neuroscience & Biobehavioral Reviews, 44, 124-141. https://doi.org/10.1016/j.neubiorev.2013.09.015 |
[24] |
Gruzelier, J. H. (2014b). Eeg-Neurofeedback for Optimising Performance. III: A Review of Methodological and Theoretical Considerations. Neuroscience & Biobehavioral Reviews, 44, 159-182. https://doi.org/10.1016/j.neubiorev.2014.03.015 |
[25] |
Gruzelier, J., Inoue, A., Smart, R., Steed, A., & Steffert, T. (2010). Acting Performance and Flow State Enhanced with Sensory-Motor Rhythm Neurofeedback Comparing Ecologically Valid Immersive VR and Training Screen Scenarios. Neuroscience Letters, 480, 112-116. https://doi.org/10.1016/j.neulet.2010.06.019 |
[26] |
Harmelech, T., Friedman, D., & Malach, R. (2015). Differential Magnetic Resonance Neurofeedback Modulations across Extrinsic (Visual) and Intrinsic (Default-Mode) Nodes of the Human Cortex. Journal of Neuroscience, 35, 2588-2595. https://doi.org/10.1523/JNEUROSCI.3098-14.2015 |
[27] |
Heinrich, H., Gevensleben, H., Freisleder, F. J., Moll, G. H., & Rothenberger, A. (2004). Training of Slow Cortical Potentials in Attention-Deficit/Hyperactivity Disorder: Evidence for Positive Behavioral and Neurophysiological Effects. Biological Psychiatry, 55, 772-775. https://doi.org/10.1016/j.biopsych.2003.11.013 |
[28] |
Helfrich, R. F., & Knight, R. T. (2016). Oscillatory Dynamics of Prefrontal Cognitive Control. Trends in Cognitive Sciences, 20, 916-930. https://doi.org/10.1016/j.tics.2016.09.007 |
[29] |
Hinterberger, T., Neumann, N., Pham, M., Andrea, K., Grether, A., Hofmayer, N. et al. (2004). A Multimodal Brain-Based Feedback and Communication System. Experimental Brain Re-search, 154, 521-526. https://doi.org/10.1007/s00221-003-1690-3 |
[30] |
Hofmann, W., Schmeichel, B. J., & Baddeley, A. D. (2012). Execu-tive Functions and Self-Regulation. Trends in Cognitive Sciences, 16, 174-180. https://doi.org/10.1016/j.tics.2012.01.006 |
[31] |
Jacek, R., Katarzyna, J., Katarzyna, P., Ewa, K., Ryszard, C., & Andrzej, W. (2016). The Do’s and Don’ts of Neurofeedback Training: A Review of the Controlled Studies Using Healthy Adults. Frontiers in Human Neuroscience, 10, 301. https://doi.org/10.3389/fnhum.2016.00301 |
[32] |
Keefe, & Francis, F. J. (1978). Biofeedback: Theory and Research. Psychosomatic Medicine, 40, 441-442. https://doi.org/10.1097/00006842-197808000-00012 |
[33] |
Keizer, A. W., Verment, R. S., & Hommel, B. (2010). Enhancing Cognitive Control through Neurofeedback: A Role of Gamma-Band Activity in Managing Episodic Retrieval. NeuroImage, 49, 3404-3413. https://doi.org/10.1016/j.neuroimage.2009.11.023 |
[34] |
Keynan, J. N., Meir-Hasson, Y., Gilam, G., Cohen, A., Jack-ont, G., Kinreich, S. et al. (2016). Limbic Activity Modulation Guided by FMRI-Inspired EEG Improves Implicit Emotion Regulation. Biological Psychiatry, 80, 490-496. https://doi.org/10.1016/j.biopsych.2015.12.024 |
[35] |
Kober, S. E., Matthias, W., Manuel, N., Christa, N., & Guil-herme, W. (2013). Learning to Modulate One’s Own Brain Activity: The Effect of Spontaneous Mental Strategies. Fron-tiers in Human Neuroscience, 7, 695. https://doi.org/10.3389/fnhum.2013.00695 |
[36] |
Kouijzer, M. E. J., Moor, J. M. H. D., Gerrits, B. J. L., Congedo, M., & Schie, H. T. V. (2009). Neurofeedback Improves Executive Functioning in Children with Autism Spectrum Disorders. Research in Autism Spectrum Disorders, 3, 145-162. https://doi.org/10.1016/j.rasd.2008.05.001 |
[37] |
Lacroix, J. M., & Gowen, A. (1981). The Acquisition of Autonomic Control through Biofeedback: Some Tests of Discrimination Theory. Psychophysiology, 18, 559-572. https://doi.org/10.1111/j.1469-8986.1981.tb01826.x |
[38] |
Lubar, J. O., & Lubar, J. F. (1984). Electroencephalographic Biofeedback of SMR and Beta for Treatment of Attention Deficit Disorders in a Clinical Setting. Biofeedback and Self-Regulation, 9, 1-23. https://doi.org/10.1007/BF00998842 |
[39] |
Matthias, W., Erika, K. S., Manuel, N., Christa, N., & Guilherme, W. (2013). Control Beliefs Can Predict the Ability to up-Regulate Sensorimotor Rhythm during Neuro-feedback Training. Frontiers in Human Neuroscience, 7, 478. https://doi.org/10.3389/fnhum.2013.00478 |
[40] |
Millan, J. J. D. R., Galan, F., Vanhooydonck, D., Lew, E., Philips, J., & Nuttin, M. (2009). Asynchronous Non-Invasive Brain-Actuated Control of an Intelligent Wheelchair. International Conference of the IEEE Engineering in Medicine & Biology Society. https://doi.org/10.1109/IEMBS.2009.5332828 |
[41] |
Miller, N. E. (1969). Learning of Visceral and Glandular Res-ponses. Science, 163, 434-445. https://doi.org/10.1126/science.163.3866.434 |
[42] |
Mottaz, A., Solcà, M., Magnin, C., Corbet, T., Schnider, A., & Guggisberg, A. G. (2015). Neurofeedback Training of Alpha-Band Coherence Enhances Motor Performance. Clinical Neurophysiology, 126, 1754-1760. https://doi.org/10.1016/j.clinph.2014.11.023 |
[43] |
Neumann, N. (2001). Gehirn-Computer-Schnittstelle: Einflussfak-toren der Selbstregulation Langsamer Kortikaler Hirnpotentiale. Dissertation, Tübingen: Schwäbische Verlagsgesell-schaft. |
[44] |
Ole, J., Ali, B., Robert, O., Stefan, K., Avgis, H., Okazaki, Y. O. et al. (2011). Using Brain-Computer Interfaces and Brain-State Dependent Stimulation as Tools in Cognitive Neuroscience. Frontiers in Psychology, 2, 100. https://doi.org/10.3389/fpsyg.2011.00100 |
[45] |
Panagiotaropoulos, T. I., Deco, G., Kapoor, V., & Logothetis, N. K. (2012). Neuronal Discharges and Gamma Oscillations Explicitly Reflect Visual Consciousness in the Lateral Prefrontal Cortex. Neuron, 74, 924-935. https://doi.org/10.1016/j.neuron.2012.04.013 |
[46] |
Ray, A. M., Ranganatha, S., Mohit, R., Emanuele, P., Korhan, B., Cuntai, G. et al. (2015). A Subject-Independent Pattern-Based Brain-Computer Interface. Frontiers in Behavioral Neuros-cience, 9, 269. https://doi.org/10.3389/fnbeh.2015.00269 |
[47] |
Reiner, M., Rozengurt, R., & Barnea, A. (2014). Better than Sleep: Theta Neurofeedback Training Accelerates Memory Consolidation. Biological Psychology, 95, 45-53. https://doi.org/10.1186/1471-2202-10-87 |
[48] |
Ros, T., J. Baars, B., Lanius, R. A., & Vuilleumier, P. (2014). Tuning Pathological Brain Oscillations with Neurofeedback: A Systems Neuroscience Framework. Frontiers in Human Neuros-cience, 8, 1008. https://doi.org/10.3389/fnhum.2014.01008 |
[49] |
Ros, T., Moseley, M. J., Bloom, P. A., Benjamin, L., Parkinson, L. A., & Gruzelier, J. H. (2009). Optimizing Microsurgical Skills with EEG Neurofeedback. BMC Neuroscience, 10, 87. |
[50] |
Schlogl, A., Keinrath, C., Zimmermann, D. et al. (2007). A Fully Automated Correction Method of EOG Artifacts in EEG Recordings. Clinical Neurophysiology, 118, 98-104. https://doi.org/10.1016/j.clinph.2006.09.003 |
[51] |
Sherlin, L. H., Arns, M., Lubar, J., Heinrich, H., Kerson, C., Strehl, U. et al. (2011). Neurofeedback and Basic Learning Theory: Implications for Research and Practice. Journal of Neurothe-rapy, 15, 292-304. https://doi.org/10.1080/10874208.2011.623089 |
[52] |
Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J. et al. (2016). Closed-Loop Brain Training: The Science of Neurofeedback. Nature Reviews Neuroscience, 18, 86-100. https://doi.org/10.1038/nrn.2016.164 |
[53] |
Song, J., Davey, C., Poulsen, C., Luu, P., Turovets, S., Anderson, E. et al. (2015). EEG Source Localization: Sensor Density and Head Surface Coverage. Journal of Neuroscience Methods, 256, 9-21. https://doi.org/10.1016/j.jneumeth.2015.08.015 |
[54] |
Stefanie, E. G., Huster René J., & Herrmann, C. S. (2017). Eeg-Neurofeedback as a Tool to Modulate Cognition and Behavior: A Review Tutorial. Frontiers in Human Neuroscience, 11, 51. https://doi.org/10.3389/fnhum.2017.00051 |
[55] |
Stefanie, E. G., Huster, R. J., Christian, F., & Herrmann, C. S. (2014). Self-Regulation of Frontal-Midline Theta Facilitates Memory Updating and Mental Set Shifting. Frontiers in Be-havioral Neuroscience, 8, 420. https://doi.org/10.3389/fnbeh.2014.00420 |
[56] |
Sterman, M. B. (1973). Neurophysiologic and Clinical Studies of Sensorimotor EEG Biofeedback Training: Some Effects on Epilepsy. Seminars in Psychiatry, 5, 507. |
[57] |
Sterman, M. B., Macdonald, L. R., & Stone, R. K. (1974). Biofeedback Training of the Sensorimotor Electroencephalogram Rhythm in Man: Effects on Epilepsy. Epilepsia, 15, 395-416. https://doi.org/10.1111/j.1528-1157.1974.tb04016.x |
[58] |
Thompson, R. H., Iwata, B. A., & Hagopian, L. (2005). A Review of Reinforcement Control Procedures. Journal of Applied Behavior Analysis, 38, 257-278. https://doi.org/10.1901/jaba.2005.176-03 |
[59] |
Ute, S. (2014). What Learning Theories Can Teach Us in Designing Neurofeedback Treatments. Frontiers in Human Neuroscience, 8, 894. https://doi.org/10.3389/fnhum.2014.00894 |
[60] |
Van Schie, H. T., Whitmarsh, S., Wouters, J., & Jensen, O. (2014). Neurofeedback as an Experimental Technique: Controlled Theta Oscillations Modulate Reaction Times in a Sternberg Working Memory Task. Conference Program and Abstracts SAN/NIHC 2014 Meeting. |
[61] |
Vernon, D., Egner, T., Coop-er, N., Compton, T., Neilands, C., Sheri, A. et al. (2003). The Effect of Training Distinct Neurofeedback Protocols on As-pects of Cognitive Performance. International Journal of Psychophysiology, 47, 75-85. https://doi.org/10.1016/S0167-8760(02)00091-0 |
[62] |
Von Stein, A., Chiang, C., & Konig, P. (2000). Top-down Processing Mediated by Interareal Sync Hronization. Proceedings of the National Academy of Sciences, 97, 14748-14753. https://doi.org/10.1073/pnas.97.26.14748 |
[63] |
Vukelic, M., & Gharabaghi, A. (2015). Oscillatory Entrainment of the Motor Cortical Network during Motor Imagery Is Modulated by the Feedback Modality. NeuroImage, 111, 1-11. https://doi.org/10.1016/j.neuroimage.2015.01.058 |
[64] |
Wang, Q., Sourina, O., & Nguyen, M. K. (2011). Fractal Di-mension Based Neurofeedback in Serious Games. The Visual Computer, 27, 299-309. https://doi.org/10.1007/s00371-011-0551-5 |
[65] |
Wyrwicka, W., & Sterman, M. B. (1968). Instrumental Conditioning of Sensorimotor Cortex EEG Spindles in the Waking Cat. Physiology & Behavior, 3, 703-707. https://doi.org/10.1016/0031-9384(68)90139-X |
[66] |
Zoefel, B., Huster, R. J., & Herrmann, C. S. (2011). Neuro-feedback Training of the Upper Alpha Frequency Band in EEG Improves Cognitive Performance. NeuroImage, 54, 1427-1431. https://doi.org/10.1016/j.neuroimage.2010.08.078 |
[67] |
Zotev, V., Phillips, R., Yuan, H., Misaki, M., & Bodurka, J. (2014). Self-Regulation of Human Brain Activity Using Simultaneous Real-Time FMRI and EEG Neurofeed-back. NeuroImage, 85, 985-995. |