[1] |
Berg, G., Zachow, C., Müller, H., et al. (2013) Next-Generation Bio-Products Sowing the Seeds of Success for Sus-tainable Agriculture. Agronomy, 3, 648-656. https://doi.org /10.3390/agronomy3040648 |
[2] |
Mendes, R., Gar-beva, P. and Raaijmakers, J.M. (2013) The Rhizosphere Microbiome: Significance of Plant Beneficial, Plant Pathogenic, and Human Pathogenic Microorganisms. FEMS Microbiology Reviews, 37, 634-663. https://doi.org /10.1111/1574-6976.12028 |
[3] |
Hardoim, P.R., Overbeek, L.S.V. and Elsas, J.D.V. (2008) Prop-erties of Bacterial Endophytes and Their Proposed Role in Plant Growth. Trends in Microbiology, 16, 467-471. https://doi.org /10.1016/j.tim.2008.07.008 |
[4] |
Triplett, E.W. (1996) Diazotrophic Endophytes: Progress and Prospects for Nitrogen Fixation in Monocots. Plant and Soil, 186, 29-38. https://doi.org /10.1007/BF00035052 |
[5] |
Harish, S., Kavino, M., Kumar, N., et al. (2009) Induction of Defense-Related Proteins by Mixtures of Plant Growth Promoting Endophytic Bacteria against Banana bunchy top Virus. Biological Control, 51, 16-25. https://doi.org /10.1016/j.biocontrol.2009.06.002 |
[6] |
Carroll, G. (1988) Fungal Endophytes in Stems and Leaves: From Latent Pathogen to Mutualistic Symbiont. Ecology, 69, 2-9. https://doi.org /10.2307/1943154 |
[7] |
Smith, S.E. and Read, D.J. (2008) Mycorrhizal Symbiosis. 3rd Edition, Academic Press, San Diego. |
[8] |
孙吉庆, 刘润进, 李敏. 丛枝菌根真菌提高植物抗逆性的效应及其机制研究进展[J]. 植物生理学报, 2012, 48(9): 845-852 |
[9] |
Long, S.R. (1996) Special Review Issue on Plant-Microbe Interactions. Rhizobium Symbiosis: Nod Factors in Perspective. The Plant Cell, 8, 1885-1898. https://doi.org /10.1105/tpc.8.10.1885 |
[10] |
Wang, D., Yang, S., Tang, F., et al. (2012) Symbiosis Specificity in the Legume: Rhizobial Mutualism. Cellular Microbiology, 14, 334-342. https://doi.org /10.1111/j.1462-5822.2011.01736.x |
[11] |
Lucero, M.E., Barrow, J.R., Osuna, P., et al. (2006) Plant-Fungal Interactions in Arid and Semi-Arid Ecosystems: Large-Scale Impacts from Microscale Processes. Journal of Arid Environments, 65, 276-284. https://doi.org /10.1016/j.jaridenv.2005.08.014 |
[12] |
Barrow, J.R., Lucero, M.E., Reyes-Vera, I., et al. (2008) Do Symbiotic Microbes Have a Role in Plant Evolution, Performance and Response to Stress? Communicative and Inte-grative Biology, 1, 69-73. https://doi.org /10.4161/cib.1.1.6238 |
[13] |
Rodriguez, R.J., et al. (2009) Fungal Endophytes: Diversity and Func-tional Roles. New Phytologist, 182, 314-330. https://doi.org /10.1111/j.1469-8137.2009.02773.x |
[14] |
梁宇, 高玉葆. 内生真菌对植物生长发育及抗逆性的影响[J]. 植物学通报, 2000(1): 52-59. |
[15] |
Hallmann, J., Quadt-Hallmann, A., Mahaffee, W.F., et al. (1997) Bacterial Endophytes in Agricultural Crops. Canadian Journal of Microbiology, 43, 895-914. https://doi.org /10.1139/m97-131 |
[16] |
Kobayashi, D.Y. and Palumbo, J.D. (2000) Bacterial Endophytes and Their Effects on Plants and Uses in Agriculture. In: Bacon, C.W. and White, J.F., Eds., Microbial Endophytes, Springer, New York, 199-233. |
[17] |
Lodewyckx, C., Vangronsveld, J., Porteous, F., et al. (2002) Endophytic Bacteria and Their Potential Applications. Critical Reviews in Plant Sciences, 21, 583-606. https://doi.org /10.1080/0735-260291044377 |
[18] |
Adhikari, T.B., Joseph, C.M., Yang, G., Phillips, D.A. and Nelson, L.M. (2001) Evaluation of Bacteria Isolated from Rice for Plant Growth Promotion and Biological Control of Seedling Disease of Rice. Canadian Journal of Microbiology, 47, 916-924. https://doi.org /10.1139/w01-097 |
[19] |
Cook, R.J., Tho-mashow, L.S., Weller, D.M., et al. (1995) Molecular Mechanisms of Defense by Rhizobacteria against Root Disease. Proceedings of the National Academy of Sciences of the United States of America, 92, 4197-4201. https://doi.org /10.1073/pnas.92.10.4197 |
[20] |
Doty, S.L., Oakley, B., Xin, G., et al. (2009) Diazotrophic Endo-phytes of Native Black Cottonwood and Willow. Symbiosis, 47, 23-33. https://doi.org /10.1007/BF03179967 |
[21] |
Moore, F.P., Barac, T., Borremans, B., et al. (2006) Endophytic Bacterial Diversity in Poplar Trees Growing on a BTEX-Contaminated Site: The Characterisation of Isolates with Potential to Enhance Phy-toremediation. Systematic & Applied Microbiology, 29, 539-556. https://doi.org /10.1016/j.syapm.2005.11.012 |
[22] |
Ryan, R.P., Kieran, G., Ashley, F., et al. (2008) Bacterial Endophytes: Recent Developments and Applications. FEMS Microbiology Letters, 78, 1-9. https://doi.org /10.1111/j.1574-6968.2007.00918.x |
[23] |
Strobel, G., Daisy, B., Castillo, U., et al. (2004) Natural Products from En-dophytic Microorganisms. Journal of Natural Products, 67, 257-268. https://doi.org /10.1021/np030397v |
[24] |
El-Tarabily, K.A., Nassar, A.H., Hardy, G.E.St., et al. (2009) Plant Growth Promotion and Biological Control of Pythium aphanidermatum, a Pathogen of Cucumber, by Endophytic Actinomycetes. Journal of Applied Microbiology, 106, 13-26. https://doi.org /10.1111/j.1365-2672.2008.03926.x |
[25] |
Ding, S., Huang, C.L., Sheng, H.M., et al. (2011) Effect of Inoculation with the Endophyte Clavibacter sp. Strain Enf12 on Chilling Tolerance in Chorispora bungeana. Physiologia Plantarum, 141, 141-151. https://doi.org /10.1111/j.1399-3054.2010.01428.x |
[26] |
Sturz, A.V. and Kimpinski, J. (2004) Endoroot Bacteria Derived from Marigolds (Tagetes spp.) Can Decrease Soil Population Densities of Root-Lesion Nematodes in the Po-tato Root Zone. Plant & Soil, 262, 241-249. https://doi.org /10.1023/B:PLSO.0000037046.86670.a3 |
[27] |
Sheng, X.F., Xia, J.J., Jiang, C.Y., et al. (2008) Characterization of Heavy Metal-Resistant Endophytic Bacteria from Rape (Brassica napus) Roots and Their Potential in Promoting the Growth and Lead Accumulation of Rape. Environmental Pollution, 156, 1164-1170. https://doi.org /10.1016/j.envpol.2008.04.007 |
[28] |
Sziderics, A.H., Rasche, F., Trognitz, F., et al. (2007) Bacterial Endophytes Contribute to Abiotic Stress Adaptation in Pepper Plants (Capsicum annuum L.). Canadian Journal of Microbiology, 53, 1195-1202. https://doi.org /10.1139/W07-082 |
[29] |
Mastretta, C., Barac, T., Vangronsveld, J., et al. (2006) Endophytic Bacte-ria and Their Potential Application to Improve the Phytoremediation of Contaminated Environments. Biotechnology and Genetic Engineering Reviews, 23, 175-188. https://doi.org /10.1080/02648725.2006.10648084 |
[30] |
Yandigeri, M.S., Meena, K.K., Singh, D., et al. (2012) Drought-Tolerant Endophytic Actinobacteria Promote Growth of Wheat (Triticum aestivum) under Water Stress Conditions. Plant Growth Regulation, 68, 411-420. https://doi.org /10.1007/s10725-012-9730-2 |
[31] |
高小宁. 植物内生细菌菌株Em7对油菜菌核病的防治研究[D]: [博士学位论文]. 杨凌: 西北农林科技大学, 2012. |
[32] |
陈炜. 植物内生细菌BS-2和TB2在荔枝体内的定殖及对荔枝霜霉病的防治[D]: [硕士学位论文]. 福州: 福建农林大学, 2009. |
[33] |
Liu, B., Huang, L., Kang, Z., et al. ( 2011) Evaluation of Endophytic Bacterial Strains as Antagonists of Take-All in Wheat Caused by Gaeumannomyces graminis var. tritici in Greenhouse and Field. Journal of Pest Science, 84, 257-264. https://doi.org /10.1007/s10340-011-0355-4 |
[34] |
余建. 柑橘内生细菌YS-45在油菜上的定殖及对菌核病的防效[D]: [硕士学位论文]. 长沙: 湖南农业大学, 2008. |
[35] |
孙洋. 内生细菌BS-315对苹果斑点落叶病菌的防治作用研究[D]: [硕士学位论文]. 保定: 河北农业大学, 2010. |
[36] |
周蕊. 内生细菌EBS05诱导烟草抗TMV机理的研究[D]: [硕士学位论文]. 郑州: 河南农业大学, 2013. |
[37] |
钮旭光, 韩梅, 宋立超, 肖亦农. 翅碱蓬内生细菌鉴定及耐盐促生作用研究[J]. 沈阳农业大学学报, 2011, 42(6): 698-702. |
[38] |
张艳峰. 金属耐性植物内生细菌对油菜耐受与富集重金属的影响及其机制研究[D]: [博士学位论文]. 南京: 南京农业大学, 2011. |
[39] |
刘莉华, 刘淑杰, 陈福明, 杨小龙, 杨春平, 吴秉奇, 张淼, 赵晶晶. 接种内生细菌对龙葵吸收积累镉的影响[J]. 环境科学学报, 2013, 33(12): 3368-3375. |
[40] |
潘风山, 陈宝, 马晓晓, 杨肖娥, 冯英. 一株镉超积累植物东南景天特异内生细菌的筛选及鉴定[J]. 环境科学学报, 2014, 34(2): 449-456. |
[41] |
孙乐妮. 铜耐性植物内生和根际细菌的生物多样性及其强化植物富集铜的研究[D]: [博士学位论文]. 南京: 南京农业大学, 2009. |
[42] |
韩坤, 田曾元, 刘珂, 张佳夜, 常银银, 郭予琦. 具有ACC脱氨酶活性的海滨锦葵(Kosteletzkya pentacarpos)内生细菌对小麦耐盐性的影响[J]. 植物生理学报, 2015, 51(2): 212-220. |
[43] |
洪永聪, 辛伟, 来玉宾, 翁昕, 胡方平. 茶树内生防病和农药降解菌的分离[J]. 茶叶科学, 2005(3): 183-188. |
[44] |
Babu, A.G., Kim, J.D. and Oh, B.T. (2013) Enhancement of Heavy Metal Phytore-mediation by Alnusfirma with Endophytic Bacillus thuringiensis GDB-1. Journal of Hazardous Materials, 250-251, 477-483. https://doi.org /10.1016/j.jhazmat.2013.02.014 |
[45] |
Ramesh, R., Joshi, A.A. and Ghanekar, M.P. (2009) Pseu-domonads: Major Antagonistic Endophytic Bacteria to Suppress Bacterial wilt Pathogen, Ralstonia solanacearum in the Eggplant (Solanum melongena L.). World Journal of Microbiology & Biotechnology, 25, 47-55. https://doi.org /10.1007/s11274-008-9859-3 |
[46] |
Mei, C. and Flinn, B. (2010) The Use of Beneficial Microbial Endophytes for Plant Biomass and Stress Tolerance Improvement. Recent Patents on Biotechnology, 4, 81-95. https://doi.org /10.2174/187220810790069523 |
[47] |
Puente, M.E., Li, C.Y. and Bashan, Y. (2009) Endophytic Bacteria in Cacti Seeds Can Improve the Development of Cactus Seedlings. Environmental and Experimental Botany, 66, 402-408. https://doi.org /10.1016/j.envexpbot.2009.04.007 |
[48] |
Ye, B., Saito, A. and Minamisawa, K. (2006) Effect of In-oculation with Anaerobic Nitrogenixing Consortium on Salt Tolerance of Miscanthus sinensis. Soil Science and Plant Nutrition, 51, 243-249. https://doi.org /10.1111/j.1747-0765.2005.tb00028.x |
[49] |
Germaine, K.J., Liu, X., Cabellos, G.G., et al. (2006) Bacterial Endophyte-Enhanced Phytoremediation of the Organochlorine Herbicide 2,4-Dichlorophenoxyacetic Acid. FEMS Microbiology Ecology, 57, 302-310. https://doi.org /10.1111/j.1574-6941.2006.00121.x |
[50] |
Weyens, N., Truyens, S., Dupae, J., et al. (2010) Poten-tial of the TCE-Degrading Endophyte Pseudomonas pitida W619-TCE to Improve Plant Growth and Reduce TCE Phytotoxicity and Evapotranspiration in Poplar Cuttings. Environmental Pollution, 158, 2915-2919. https://doi.org /10.1016/j.envpol.2010.06.004 |
[51] |
Pavlo, A., Leonid, O., Iryna, Z., et al. (2011) Endophytic Bacteria Enhancing Growth and Disease Resistance of Potato (Solanum tuberosum L.). Biological Control, 56, 43-49. https://doi.org /10.1016/j.biocontrol.2010.09.014 |
[52] |
Taghavi, S., Barac, T., Greenberg, B., et al. (2005) Horizontal Gene Transfer to Endogenous Endophytic Bacteria from Poplar Improves Phytoremediation of Toluene. Applied and Environmental Microbiology, 71, 8500-8505. https://doi.org /10.1128/AEM.71.12.8500-8505.2005 |
[53] |
滕松山. 具ACC脱氨酶活性的碱蓬内生细菌对植物的解盐促生作用及其ACC脱氨酶基因的克隆[D]: [硕士学位论文]. 济南: 山东师范大学, 2011. |
[54] |
Ozawa, T., Wu, J.M. and Fujii, S. (2007) Effect of Inoculation with a Strain of Pseudomonas pseudoalcaligenes Isolated from the Endorhizosphere of Salicornia europea on Salt Tolerance of the Glasswort. Soil Science and Plant Nutrition, 53, 12-16. https://doi.org /10.1111/j.1747-0765.2007.00098.x |
[55] |
陈小兵, 盛下放, 何琳燕, 江春玉, 孙乐妮, 马海燕. 具菲降解特性植物内生细菌的分离筛选及其生物学特性[J]. 环境科学学报, 2008(7): 1308-1313. |
[56] |
李春宏. 棉花抗病内生细菌的分离及其对黄萎病的生物防治[D]: [博士学位论文]. 南京: 南京农业大学, 2010. |
[57] |
葛米红. 利用内生细菌防治水稻白叶枯病的研究[D]: [硕士学位论文]. 武汉: 华中农业大学, 2008. |
[58] |
赵希俊. 内生细菌提高茶树耐铝毒特性的调控效应[D]: [硕士学位论文]. 福州: 福建农林大学, 2014. |
[59] |
Kuklinsky-Sobral, J., Araújo, W.L., Mendes, R., et al. (2004) Isolation and Characterization of Soybean-Associated Bacteria and Their Potential for Plant Growth Promotion. Environmental Microbiology, 6, 1244-1251. https://doi.org /10.1111/j.1462-2920.2004.00658.x |
[60] |
AitBarka, E., Nowak, J. and Clement, C. (2006) Enhancement of Chilling Resistance of Inoculated Grapevine Plantlets with a Plant Growth-Promoting Rhizobacterium, Burkholderia phytofirmans Strain PsJN. Applied and Environmental Microbiology, 72, 7246-7252. https://doi.org /10.1128/AEM.01047-06 |
[61] |
Ren, J.H., Ye, J.R., Liu, H., et al. (2011) Isolation and Characterization of a New Burkholderia pyrrocinia Strain JK-SH007 as a Potential Biocontrol Agent. World Journal of Microbiology & Biotechnology, 27, 2203-2215. https://doi.org /10.1007/s11274-011-0686-6 |
[62] |
Van Aken, B., Yoon, J.M. and Schnoor, J.L. (2004) Biodegradation of Nitro-Substituted Explosives 2,4,6-Trinitrotoluene, Hexahydro-1,3,5-trinitro-1,3,5-triazine, and Octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a Phytosymbiotic Methylobacterium sp. Associated with Poplar Tissues (Populus deltoides x nigra DN34). Applied and Environmental Microbiology, 70, 508-517. https://doi.org /10.1128/AEM.70.1.508-517.2004 |
[63] |
Madhaiyan, M., Poonguzhali, S. and Sa, T. (2007) Metal Tolerating Methylotrophic Bacteria Reduces Nickel and Cadmium Toxicity and Promotes Plant Growth of Tomato (Lycopersicon esculentum L.). Chemosphere, 69, 220-228. https://doi.org /10.1016/j.chemosphere.2007.04.017 |
[64] |
Selvakumar, G., Mohan, M., Kundu, S., et al. (2008) Cold Tolerance and Plant Growth Promotion Potential of Serratia marcescens Strain SRM (MTCC 8708) Isolated from Flowers of Summer Squash (Cucurbita pepo). Letters in Applied Microbiology, 46, 171-175. https://doi.org /10.1111/j.1472-765X.2007.02282.x |
[65] |
Luo, S., Wan, Y., Xiao, X., et al. (2011) Isolation and Characterization of Endophytic Bacterium LRE07 from Cadmium Hyperaccumulator Solanum nigruml and Its Potential for Remediation. Applied Microbiology and Biotechnology, 89, 1637-1644. https://doi.org /10.1007/s00253-010-2927-2 |
[66] |
Berg, G., Krechel, A., Ditz, M., et al. (2005) Endophytic and Ectophytic Potato-Associated Bacterial Communities Differ in Structure and Antagonistic Function against Plant Pathogenic Fungi. FEMS Microbiology Ecology, 51, 215-229. https://doi.org /10.1016/j.femsec.2004.08.006 |
[67] |
Iniguez, A.L., Dong, Y., Triplett, E.W., et al. (2004) Nitrogen Fixation in Wheat Provided by Klebsiella pneumoniae 342. Molecular Plant-Microbe Interactions, 17, 1078-1085. https://doi.org /10.1094/MPMI.2004.17.10.1078 |
[68] |
Li, W.C., Ye, Z.H. and Wang, M.H. (2007) Effects of Bacteria an Enhanced Metal Uptake of the Cd/Zn-Hyperaccumulating Plant, Sedum alfredii. Journal of Experimental Botany, 58, 4173-4182. https://doi.org /10.1093/jxb/erm274 |
[69] |
Wang, Y., Yamazoe, A., Suzuki, S., et al. (2004) Isolation and Characterization of Dibenzofuran-Degrading Comamonas sp. Strains Isolated from White Clover Roots. Current Microbiology, 49, 288-294. https://doi.org /10.1007/s00284-004-4348-x |
[70] |
He, H., Ye, Z., Yang, D., et al. (2013) Characterization of Endophytic Rahnella sp. JN6 from Polygonum pubescens and Its Potential in Promoting Growth and Cd, Pb, Zn Uptake by Brassica napus. Chemosphere, 90, 1960-1965. https://doi.org /10.1016/j.chemosphere.2012.10.057 |
[71] |
刘爽. 具有菲降解性能的植物内生细菌Pn2分离鉴定、降解条件优化及其定殖初探[D]: [硕士学位论文]. 南京: 南京农业大学, 2012. |
[72] |
Marulanda, A., Porcel, R., Barea, J.M., et al. (2007) Drought Tolerance and Antioxidant Activities in Lavender Plants Colonized by Native Drought-tolerant or Drought-Sensitive Glomus Species. Microbial Ecology, 54, 543-552. https://doi.org /10.1007/s00248-007-9237-y |
[73] |
Peer, R.V. (1991) Induced Resistance and Phytoalexin Accumulation in Biological Control of Fusarium Wilt of Carnation by Pseudomonas sp. Strain WCS417r. Phytopathology, 81, 728-734. https://doi.org /10.1094/Phyto-81-728 |
[74] |
AitBarka, E. and Audran, J.C. (1997) Response of Champenoise Grapevine to Low Temperatures: Changes of Shoot and Bud Proline Concentrations in Response to Low Temperatures and Correlations with Freezing Tolerance. Journal of Horticultural Science, 72, 577-582. https://doi.org /10.1080/14620316.1997.11515546 |
[75] |
Hu, W.H., Shi, K., Song, X.S., et al. (2006) Different Effects of Chilling on Respiration in Leaves and Roots of Cucumber (Cucumis sativus). Plant Physiology and Biochemistry (Paris), 44, 837-843. https://doi.org /10.1016/j.plaphy.2006.10.016 |
[76] |
Fortunato, A.S., Lidon, F.C., Batista-Santos, P., et al. (2010) Biochemical and Molecular Characterization of the Antioxidative System of Coffea sp. under Cold Conditions in Genotypes with Contrasting Tolerance. Journal of Plant Physiology, 167, 333-342. https://doi.org /10.1016/j.jplph.2009.10.013 |
[77] |
丁硕. 冰缘植物内生细菌与高山离子芥抗寒性关系的研究[D]: [博士学位论文]. 兰州: 兰州大学, 2011. |
[78] |
Arshad, M. and Frankenberger, W.T. (1991) Microbial Production of Plant Hormones. Plant and Soil, 133, 1-8. https://doi.org /10.1007/978-94-011-3336-4_71 |
[79] |
Reiter, B., Burgmann, H., Burg, K., et al. (2003) Endophytic nifH Gene Diversity in African Sweet Potato. Canadian Journal of Microbiology, 49, 549-555. https://doi.org /10.1139/w03-070 |
[80] |
Dalton, D.A., Kramer, S., Azios, N., et al. (2004) Endophytic Nitrogen Fixation in Dune Grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiology Ecology, 49, 469-479. https://doi.org /10.1016/j.femsec.2004.04.010 |
[81] |
龙良鲲, 肖崇刚. 内生细菌01-144在番茄根茎内定殖的初步研究[J]. 微生物学通报, 2003(5): 53-56. |
[82] |
Schardl, C.L., Leuchtmann, A. and Spiering, M.J. (2004) Symbioses of Grasses with Seedborne Fungal Endophytes. Annual Review of Plant Biology, 55, 315-340. https://doi.org /10.1146/annurev.arplant.55.031903.141735 |
[83] |
Kuldau, G. and Bacon, C. (2008) Clavicipitaceous Endophytes: Their Ability to Enhance Resistance of Grasses to Multiple Stresses. Biological Control, 46, 57-71. https://doi.org /10.1016/j.biocontrol.2008.01.023 |
[84] |
Kloepper, J.W., Rodríguez-Kábana, R., Mcinroy, J.A., et al. (1991) Analysis of Populations and Physiological Characterization of Microorganisms in Rhizospheres of Plants with Antagonistic Properties to Phytopathogenic Nematodes. Plant and Soil, 136, 95-102. https://doi.org /10.1007/BF02465224 |
[85] |
Bent, E. and Chanway, C.P. (1998) The Growth-Promoting Effects of a Bacterial Endophyte on Lodgepole Pine Are Partially Inhibited by the Presence of Other Rhizobacteria. Canadian Journal of Microbiology, 44, 980-988. https://doi.org /10.1139/w98-097 |
[86] |
Garbisu, C. and Alkorta, I. (2001) Phytoextraction: A Cost-Effective Plant-Based Technology for the Removal of Metals from the Environment. Bioresource Technology, 77, 229-236. https://doi.org /10.1016/S0960-8524(00)00108-5 |
[87] |
Chen, Y., Shen, Z. and Li, X. (2004) The Use of Vetiver Grass (Vetiveria zizanioides) in the Phytoremediation of Soils Contaminated with Heavy Metals. Applied Geochemistry, 19, 1553-1565. https://doi.org /10.1016/j.apgeochem.2004.02.003 |
[88] |
Yang, X., Feng, Y., He, Z., et al. (2005) Molecular Mechanisms of Heavy Metal Hyperaccumulation and Phytoremediation. Journal of Trace Elements in Medicine & Biology, 18, 339-353. https://doi.org /10.1016/j.jtemb.2005.02.007 |
[89] |
Saravanan, V.S., Madhaiyan, M. and Thangaraju, M. (2007) Solubilization of Zinc Compounds by the Diazotrophic, Plant Growth Promoting Bacterium Gluconacetobacter diazotrophicus. Chemosphere, 66, 1794-1798. https://doi.org /10.1016/j.chemosphere.2006.07.067 |
[90] |
万勇. 内生细菌在重金属植物修复中的作用机理及应用研究[D]: [博士学位论文]. 长沙: 湖南大学, 2013. |
[91] |
Bankston, J.L., Sola, D.L., Komor, A.T., et al. (2002) Degradation of Trichloroethylene in Wetland Microcosms Containing Broad-Leaved Cattail and Eastern Cottonwood. Water Research, 36, 1539-1546. https://doi.org /10.1016/S0043-1354(01)00368-2 |
[92] |
Tsavkelova, E.A., Cherdyntseva, T.A., Botina, S.G., et al. (2007) Bacteria Associated with Orchid Roots and Microbial Production of Auxin. Microbiological Research, 162, 69-76. https://doi.org /10.1016/j.micres.2006.07.014 |
[93] |
Patten, C.L. and Glick, B.R. (2002) Role of Pseudomonas putida Indoleacetic Acid in Development of the Host Plant Root System. Applied and Environmental Microbiology, 68, 3795-3801. https://doi.org /10.1128/AEM.68.8.3795-3801.2002 |
[94] |
Rajkumar, M., Lee, K.J., Lee, W.H., et al. (2005) Growth of Brassica juncea under Chromium Stress: Influence of Siderophores and Indole 3 Acetic Acid Producing Rhizosphere Bacteria. Journal of Environmental Biology, 26, 693-699. |
[95] |
Chakraborty, U., Chakraborty, B. and Basnet, M. (2006) Plant Growth Promotion and Induction of Resistance in Camellia sinensis by Bacillus megaterium. Journal of Basic Microbiology, 46, 186-195. https://doi.org /10.1002/jobm.200510050 |
[96] |
Long, H.H., Schmidt, D.D. and Baldwin, I.T. (2008) Native Bacterial Endophytes Promote Host Growth in a Species-Specific Manner; Phytohormone Manipulations Do Not Result in Common Growth Responses. PLoS ONE, 3, e2702. https://doi.org /10.1371/journal.pone.0002702 |
[97] |
Xiao, D., El-Alai, Y., Penrose, D.M., et al. (2004) Responses of Three Grass Species to Creosote during Phytoremediation. Environmental Pollution, 130, 453-463. https://doi.org /10.1016/j.envpol.2003.12.018 |
[98] |
Benhamou, N. and Tuzun, K.S. (1998) Induction of Resistance against Fusarium Wilt of Tomato by Combination of Chitosan with an Endophytic Bacterial Strain: Ultrastructure and Cytochemistry of the Host Response. Planta, 204, 153-168. https://doi.org /10.1007/s004250050242 |
[99] |
Benhamou, N., Gagne, S., Le Quere, D., et al. (2000) Bacterial-Mediated Induced Resistance in Cucumber: Beneficial Effect of the Endophytic Bacterium Serratia plymuthica on the Protection against Infection by Pythium ultimum. Phytopathology, 90, 45-56. https://doi.org /10.1094/PHYTO.2000.90.1.45 |
[100] |
Glick, B.R., Karaturovíc, D.M. and Newell, P.C. (1995) A Novel Procedure for Rapid Isolation of Plant Growth Promoting Pseudomonads. Canadian Journal of Microbiology, 41, 533-536. https://doi.org /10.1139/m95-070 |
[101] |
Whipps, J.M. and Whipps, J.M. (2001) Microbial Interactions and Biocontrol in the Rhizosphere. Journal of Experimental Botany, 52, 487-511. https://doi.org /10.1093/jxb/52.suppl_1.487 |
[102] |
Riggs, P.J., Chelius, M.K., Iniguez, A.L., et al. (2001) Enhanced Maize Productivity by Inoculation with Diazotrophic Bacteria. Australian Journal of Plant Physiology, 28, 829-836. https://doi.org /10.1071/PP01045 |
[103] |
Zhang, X., Lin, L., Zhu, Z., et al. (2013) Colonization and Modulation of Host Growth and Metal Uptake by Endophytic Bacteria of Sedum alfredii. International Journal of Phytoremediation, 15, 51-64. https://doi.org /10.1080/15226514.2012.670315 |
[104] |
Mastretta, C., Taghavi, S., Daniel, V.D.L., et al. (2009) Endophytic Bacteria from Seeds of Nicotiana tabacum Can Reduce Cadmium Phytotoxicity. International Journal of Phytoremediation, 11, 251-267. https://doi.org /10.1080/15226510802432678 |
[105] |
马莹, 骆永明, 滕应, 李秀华. 内生细菌强化重金属污染土壤植物修复研究进展[J]. 土壤学报, 2013, 50(1): 195-202. |
[106] |
Shi, J., Liu, A., Li, X., et al. (2011) Inhibitory Mechanisms Induced by the Endophytic Bacterium MGY2 in Controlling Anthracnose of Papaya. Biological Control, 56, 2-8. https://doi.org /10.1016/j.biocontrol.2010.09.012 |
[107] |
K, J., Downing, et al. (2000) Biocontrol of the Sugarcane Borer Eldana saccharina by Expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA Genes in Sugarcane-Associated Bacteria. Applied and Environmental Microbiology, 66, 2804-2810. https://doi.org /10.1128/AEM.66.7.2804-2810.2000 |
[108] |
Turner, J.T., Lampel, J.S., Stearman, R.S., et al. (1991) Stability of the δ-Endotoxin Gene from Bacillus thuringiensis subsp. kurstaki in a Recombinant Strain of Clavibacterxyli subsp. cynodontis. Applied & Environmental Microbiology, 57, 3522-3528. https://doi.org /10.1128/AEM.57.12.3522-3528.1991 |
[109] |
Carlo, Leifert, Cindy, et al. (1994) Ecology of Microbial Saprophytes and Pathogens in Tissue Culture and Field-Grown Plants: Reasons for Contamination Problems in Vitro. Critical Reviews in Plant Sciences, 13, 139-183. https://doi.org /10.1080/07352689409701912 |
[110] |
Bashan, Y.H. (1997) GAzosprillum-Plant Relationships: Environmental and Physiological Advances (1990-1996). The Canadian Journal of Microbiology, 43, 103-121. https://doi.org /10.1139/m97-015 |
[111] |
Idris, R., Trifonova, R., Puschenreiter, M., et al. (2004) Bacterial Communities Associated with Flowering Plants of the Ni Hyperaccumulator Thlaspi goesingense. Applied and Environmental Microbiology, 70, 2667-2677. https://doi.org /10.1128/AEM.70.5.2667-2677.2004 |
[112] |
Cartieaux, F., Thibaud, M.C., Zimmerli, L., et al. (2003) Transcriptome Analysis of Arabidopsis Colonized by a Plant-Growth Promoting Rhizobacterium Reveals a General Effect on Disease Resistance. The Plant Journal, 36, 177-188. https://doi.org /10.1046/j.1365-313X.2003.01867.x |
[113] |
Chi, F., Shen, S., Cheng, H., et al. (2005) Ascending Migration of Endophytic Rhizobia, from Roots to Leaves, inside Rice Plants and Assessment of Benefits to Rice Growth Physiology. Applied and Environmental Microbiology, 71, 7271-7278. https://doi.org /10.1128/AEM.71.11.7271-7278.2005 |
[114] |
Garcia-Pineda, E. and Lozoya-Gloria, E. (1999) Induced Gene Expression of 1-Aminocyclopropane-1-carboxylic Acid (ACC Oxidase) in Pepper (Capsicum annuum L.) by Arachidonic Acid. Plant Science, 145, 11-21. https://doi.org /10.1016/S0168-9452(99)00065-5 |
[115] |
Jung, H.W., Kim, W. and Wang, B.K. (2003) Three Pathogen Inducible Genes Encoding Lipid Transfer Protein from Pepper Are Differentially Activated by Pathogens, Abiotic, and Environmental Stress. Plant, Cell & Environment, 26, 915-928. https://doi.org /10.1046/j.1365-3040.2003.01024.x |