[1] |
Lezna, R.O., Tacconi, N.R.D., Centeno, S.A., et al. (1991) Adsorption of Phenol on Gold as Studied by Capacitance and Reflectance Measurements. Langmuir, 7, 1241-1246. https://doi.org/10.1021/la00054a037 |
[2] |
陈宁. 自由基的化学及与人类疾病的关系[J]. 继续医学教育学报, 1990, 4(2): 101-105. |
[3] |
朱润芝, 李京敬, 谢超, 等. 过氧化作用与肝脏疾病[J]. 世界华人消化杂志, 2010, 18(11): 1134-1140. |
[4] |
丁亚芳. 云南年青褐煤黄腐酸对自由基的影响及其酒精性肝损伤保护作用研究[D]: [硕士学位论文]. 昆明: 昆明理工大学, 2014. |
[5] |
利国. 自由基——人类健康的真正敌人有超过100种疾病与自由基产生过量有关[J]. 养生月刊, 2007, 28(4): 477-478. |
[6] |
李德才, 何晓玉, 雷辉. 自由基导致细胞衰老进而导致机体衰老的作用机制[J]. 中华现代临床医学杂志, 2009, 7(9): 783-787. |
[7] |
Gomberg, M. (1900) An Instance of Trivalent Carbon Triphenylmethyl. Journal of the American Chemical Society, 22, 757-771. https://doi.org/10.1021/ja02049a006 |
[8] |
Paneth, F. and Hofeditz, W. (1929) Über die Darstellung von freiem Methyl. Berichte der Deutschen Chemischen Gesellschaft (A and B Series), 62, 1335-1347. https://doi.org/10.1002/cber.19290620537 |
[9] |
Harman, D. (1956) A Theory Based on Free Radical and Radiation Chemistry. Journal of Gerontology, 11, 298-300. https://doi.org/10.1093/geronj/11.3.298 |
[10] |
Leighton, P.A. (1961) Photochemistry of Air Pollution. American Journal of Public Health & the Nations Health, 52, 878. |
[11] |
Ingram, D.J.E., Tapley, J.G., Jackson, R., et al. (1954) Paramagnetic Resonance in Carbonaceous Solids. Nature, 174, 797-798. https://doi.org/10.1038/174797a0 |
[12] |
Uebersfeld, J., Étienne, A. and Combrisson, J. (1954) Paramagnetic Resonance, a New Property of Coal-Like Materials. Nature, 174, 614. https://doi.org/10.1038/174614a0 |
[13] |
Lyons, M.J., Gibson, J.F. and Ingram, D.J.E. (1958) Free-Radicals Produced in Cigarette Smoke. Nature, 181, 1003-1004. https://doi.org/10.1038/1811003a0 |
[14] |
Dellinger, B., Lomnicki, S., Khachatryan, L., et al. (2007) Formation and Stabilization of Persistent Free Radicals. Proceedings of the Combustion Institute, 31, 521-528. https://doi.org/10.1016/j.proci.2006.07.172 |
[15] |
Valavanidis, A., Iliopoulos, N., Gotsis, G., et al. (2008) Persistent Free Radicals, Heavy Metals and PAHs Generated in Particulate Soot Emissions and Residue Ash from Controlled Combustion of Common Types of Plastic. Journal of Hazardous Materials, 156, 277-284. https://doi.org/10.1016/j.jhazmat.2007.12.019 |
[16] |
阮秀秀, 孙万雪, 程玲, 等. 环境持久性自由基的研究进展[J]. 上海大学学报(自然科学版), 2016, 22(2): 114-121. |
[17] |
韩林, 陈宝梁. 环境持久性自由基的产生机理及环境化学行为[J]. 化学进展, 2017, 29(9): 1008-1020. |
[18] |
杨芳. 生物质热解过程中持久性自由基的产生过程及机理[D]: [硕士学位论文]. 昆明: 昆明理工大学, 2016. |
[19] |
王朋, 吴敏, 李浩, 等. 环境持久性自由基对有机污染物环境行为的影响研究进展[J]. 化工进展, 2017, 36(11): 4243-4249. |
[20] |
Truong, H., Lomnicki, S.M. and Dellinger, B. (2010) Potential for Misidentification of Environmentally Persistent Free Radicals as Molecular Pollutants in Particulate Matter. Environmental Science & Technology, 44, 1933-1939. https://doi.org/10.1021/es902648t |
[21] |
李芳柏, 王旭刚, 周顺桂, 等. 红壤胶体铁氧化物界面有机氯的非生物转化研究进展[J]. 生态环境, 2006, 15(5): 1343-1351. |
[22] |
Qian, R.Z., Zhang, S.M., Peng, C., et al. (2020) Characteristics and Potential Exposure Risks of Environmentally Persistent Free Radicals in PM2.5 in the Three Gorges Reservoir Area, Southwestern China. Chemosphere, 252, Article ID: 126425. https://doi.org/10.1016/j.chemosphere.2020.126425 |
[23] |
Dela Cruz, A.L.N., Gehling, W., Lomnicki, S., et al. (2011) Detection of Environmentally Persistent Free Radicals at a Superfund Wood Treating Site. Environmental Science & Technology, 45, 6356-6365. https://doi.org/10.1021/es2012947 |
[24] |
Jezierski, A., Czechowski, F., Jerzykiewicz, M., et al. (2000) Electron Paramagnetic Resonance (EPR) Studies on Stable and Transient Radicals in Humic Acids from Compost, Soil, Peat and Brown Coal. Spectrochimica Acta Part A: Molecular & Biomolecular Spectroscopy, 56, 379-385. https://doi.org/10.1016/S1386-1425(99)00249-8 |
[25] |
Pryor, W.A., Prier, D.G. and Church, D.F. (1983) Electron-Spin Resonance Study of Mainstream and Sidestream Cigarette Smoke Nature of the Free Radicals in Gas-Phase Smoke and in Cigarette Tar. Environmental Health Perspectives, 47, 345-355. https://doi.org/10.1289/ehp.8347345 |
[26] |
Maskos, Z., Khachatryan, L., Cueto, R., et al. (2005) Radicals from the Pyrolysis of Tobacco. Energy & Fuels, 19, 791-799. https://doi.org/10.1021/ef040088s |
[27] |
Balakrishna, S., Lomnicki, S., McAvey, K.M., et al. (2009) Environmentally Persistent Free Radicals Amplify Ultrafine Particle Mediated Cellular Oxidative Stress and Cytotoxicity. Particle and Fibre Toxicology, 6, 3-14. https://doi.org/10.1186/1743-8977-6-11 |
[28] |
Fahmy, B., Ding, L., You, D., et al. (2010) In Vitro and in Vivo Assessment of Pulmonary Risk Associated with Exposure to Combustion Generated Fine Particles. Environmental Toxicology and Pharmacology, 29, 173-182. https://doi.org/10.1016/j.etap.2009.12.007 |
[29] |
Dellinger, B., Pryor, W.A., Cueto, R., et al. (2001) Role of Free Radicals in the Toxicity of Airborne Fine Particulate Matter. Chemical Research in Toxicology, 14, 1371-1377. https://doi.org/10.1021/tx010050x |
[30] |
Maskos, Z., Khachatryan, L., Dellinger, B. (2005) Precursors of Radicals in Tobacco Smoke and the Role of Particulate Matter in Forming and Stabilizing Radicals. Energy & Fuels, 19, 2466-2473. https://doi.org/10.1021/ef058018o |
[31] |
Cormier, S.A., Lomnicki, S., Backes, W., et al. (2006) Origin and Health Impacts of Emissions of Toxic By-Products and Fine Particles from Combustion and Thermal Treatment of Hazardous Wastes and Materials. Environmental Health Perspectives, 114, 810-817. https://doi.org/10.1289/ehp.8629 |
[32] |
Zavoisky, E. (1945) Spin-Magnetic Resonance in Paramagnetics. Journal of Physics USSR, 9, 211-245. |
[33] |
Kelley, M.A., Hebert, V.Y., Thibeaux, T.M., et al. (2013) Model Combustion-Generated Particulate Matter Containing Persistent Free Radicals Redox Cycle to Produce Reactive Oxygen Species. Chemical Research in Toxicology, 26, 1862-1871. https://doi.org/10.1021/tx400227s |
[34] |
Lomnicki, S.M., Truong, H., Vejerano, E., et al. (2008) Copper Oxide-Based Model of Persistent Free Radical Formation on Combustion-Derived Particulate Matter. Environmental Science & Technology, 42, 4982-4988. https://doi.org/10.1021/es071708h |
[35] |
程正奇. 天然有机质负载对邻苯二酚在二氧化硅—赤铁矿表面降解的影响[D]: [硕士学位论文]. 昆明: 昆明理工大学, 2016. |
[36] |
Dela Cruz, A.L.N., Cook, R.L., Lomnicki, S.M., et al. (2012) Effect of low Temperature Thermal Treatment on Soils Contaminated with Pentachlorophenol and Environmentally Persistent Free Radicals. Environmental Science & Technology, 46, 5971-5978. https://doi.org/10.1021/es300362k |
[37] |
Vejerano, E., Lomnicki, S. and Dellinger, B. (2011) Formation and Stabilization of Combustion-Generated Environmentally Persistent Free Radicals on an Fe(III)2O3 Silica Surface. Environmental Science & Technology, 45, 589-594. https://doi.org/10.1021/es102841s |
[38] |
王天娇, 陈彤, 詹明秀, 等. 废弃物焚烧飞灰中持久性自由基与二噁英及金属的关联探究[J]. 环境科学, 2016, 37(3): 1163-1170. |
[39] |
吴爱萍. 煤及其热解产物中自由基的分析[D]: [博士学位论文]. 上海: 华东理工大学, 2012. |
[40] |
郑榕萍. EPR定量测定煤中自由基的方法及煤液化机理的研究[D]: [硕士学位论文]. 上海: 华东理工大学, 2011. |
[41] |
刘国根, 邱冠周, 胡善亭, 等. 煤的ESR波谱研究[J]. 波谱学杂志, 1999, 16(2): 177-180. |
[42] |
Valentin, C.D., Neyman, K.M., Risse, T., et al. (2006) Density-Functional Model Cluster Studies of EPR g Tensors of Centers on the Surface of MgO. The Journal of Chemical Physics, 124, 044708. https://doi.org/10.1063/1.2161190 |
[43] |
Barclay, L.R.C. and Vinqvist, M.R. (1994) Membrane Peroxidation: Inhibiting Effects of Water-Soluble Antioxidants on Phospholipids of Different Charge Types. Free Radical Biology & Medicine, 16, 779-788. https://doi.org/10.1016/0891-5849(94)90193-7 |
[44] |
Jezierski, A., Skrzypek, G., Jezierski, P., et al. (2008) Electron Paramagnetic Resonance (EPR) and Stable Isotope Records of Paleoenvironmental Conditions during Peat Formation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69, 1311-1316. https://doi.org/10.1016/j.saa.2007.09.024 |
[45] |
Christoforidis, K.C., Un, S. and Deligiannakis, Y. (2007) High-Field 285 GHz Electron Paramagnetic Resonance Study of Indigenous Radicals of Humic Acids. The Journal of Physical Chemistry A, 111, 11860-11866. https://doi.org/10.1021/jp0717692 |
[46] |
Pryor, W.A., Stone, K., Zang, L.-Y., et al. (1998) Fractionation of Aqueous Cigarette Tar Extracts Fractions That Contain the Tar Radicals Cause DNA Damage. Chemical Research in Toxicology, 11, 441-448. https://doi.org/10.1021/tx970159y |
[47] |
Jia, H.Z., Nulaji, G., Gao, H.W., et al. (2016) Formation and Stabilization of Environmentally Persistent Free Radicals Induced by the Interaction of Anthracene with Fe(III)-Modified Clays. Environmental Science & Technology, 50, 6310-6319. https://doi.org/10.1021/acs.est.6b00527 |
[48] |
Hales, B.J. (1976) Immobilized Radicals. I. Principal Electron Spin Resonance Parameters of the Benzosemiquinone Radical. Chemischer Informationsdienst, 7, 5993-5997. https://doi.org/10.1002/chin.197601035 |
[49] |
Qin, C., Troy, D., Shang, C., et al. (2015) Surface Catalyzed Oxidative Oligomerization of 17β-Estradiol by Fe3+-Saturated Montmorillonite. Environmental Science & Technology, 49, 956-964. https://doi.org/10.1021/es504815t |
[50] |
Eastman, M.P., Patterson, D.E. and Pannell, K.H. (1984) Reaction of Benzene with Cu(II)- and Fe(III)-Exchanged Hectorites. Clays and Clay Minerals, 32, 327-333. https://doi.org/10.1346/CCMN.1984.0320411 |
[51] |
Maskos, Z. and Dellinger, B. (2008) Radicals from the Oxidative Pyrolysis of Tobacco. Energy & Fuels, 22, 1675-1679. https://doi.org/10.1021/ef7006694 |
[52] |
Maskos, Z. and Dellinger, B. (2008) Formation of the Secondary Radicals from the Aging of Tobacco Smoke. Energy & Fuels, 22, 382-388. https://doi.org/10.1021/ef700446v |
[53] |
Boyd, S.A. and Mortland, M.M. (1985) Dioxin Radical Formation and Polymerization on Cu(II)-Smectite. Nature, 316, 532-535. https://doi.org/10.1038/316532a0 |
[54] |
Neta, P. and Fessenden, R.W. (1974) Hydroxyl Radical Reactions with Phenols and Anilines as Studied by Electron-Spin Resonance. The Journal of Physical Chemistry, 78, 523-529. https://doi.org/10.1021/j100598a013 |
[55] |
Li, H., Guo, H., Pan, B., et al. (2016) Catechol Degradation on Hematite/Silica-Gas Interface as Affected by Gas Composition and the Formation of Environmentally Persistent Free Radicals. Scientific Reports, 6, Article No. 24494. https://doi.org/10.1038/srep24494 |
[56] |
王婷, 李浩, 郭惠莹, 等. 邻苯二酚-Fe2O3和邻苯二酚-CuO体系中持久性自由基的形成机制及特征[J]. 环境化学, 2016, 35(3): 423-429. |
[57] |
Vejerano, E., Lomnicki, S.M. and Dellinger, B. (2012) Formation and Stabilization of Combustion-Generated, Environmentally Persistent Radicals on Ni(II)O Supported on a Silica Surface. Environmental Science & Technology, 46, 9406-9411. https://doi.org/10.1021/es301136d |
[58] |
Khachatryan, L., Adounkpe, J., Maskos, Z., et al. (2006) Formation of Cyclopentadienyl Radical from the Gas-Phase Pyrolysis of Hydroquinone, Catechol, and Phenol. Environmental Science & Technology, 40, 5071-5076. https://doi.org/10.1021/es051878z |
[59] |
Farquar, G.R., Alderman, S.L., Poliakoff, E.D., et al. (2003) X-Ray Spectroscopic Studies of the High Temperature Reduction of Cu(II)O by 2-Chlorophenol on a Simulated Fly Ash Surface. Environmental Science & Technology, 37, 931-935. https://doi.org/10.1021/es020838h |
[60] |
Lomnicki, S. and Dellinger, B. (2003) A Detailed Mechanism of the Surface-Mediated Formation of PCDD/F from the Oxidation of 2-Chlorophenol on CuO/Silica Surface. The Journal of Physical Chemistry A, 107, 4387-4395. https://doi.org/10.1021/jp026045z |
[61] |
和文静. 煤和生物质热解及煤溶剂抽提过程中自由基反应行为研究[D]: [博士学位论文]. 北京: 北京化工大学, 2015. |
[62] |
Li, H., Pan, B., Liao, S.H., et al. (2014) Formation of Environmentally Persistent Free Radicals as the Mechanism for Reduced Catechol Degradation on Hematite-Silica Surface under UV Irradiation. Environmental Pollution, 188, 153-158. https://doi.org/10.1016/j.envpol.2014.02.012 |
[63] |
Giannakopoulos, E., Drosos, M. and Deligiannakis, Y. (2009) A Humic-Acid-Like Polycondensate Produced with No Use of Catalyst. Journal of Colloid and Interface Science, 336, 59-66. https://doi.org/10.1016/j.jcis.2009.03.037 |
[64] |
Nwosu, U.G., Roy, A., Dela Cruz, A.L.N., et al. (2016) Formation of Environmentally Persistent Free Radical (EPFR) in Iron(III) Cation-Exchanged Smectite Clay. Environmental Science: Processes & Impacts, 18, 42-50. https://doi.org/10.1039/C5EM00554J |
[65] |
Govindaraj, N., Mortland, M.M. and Boyd, S.A. (1987) Single Electron Transfer Mechanism of Oxidative Dechlorination of 4-Chloroanisole on Copper(II)-Smectite. Environmental Science & Technology, 21, 1119-1123. https://doi.org/10.1021/es00164a014 |
[66] |
Boyd, S.A. and Mortland, M.M. (1986) Radical Formation and Polymerization of Chlorophenols and Chloroanisole on Copper(II)-Smectite. Environmental Science & Technology, 20, 1056-1058. https://doi.org/10.1021/es00152a017 |
[67] |
Jiang, B., Dai, D.J., Yao, Y.Y., et al. (2016) The Coupling of Hemin with Persistent Free Radicals Induces a Nonradical Mechanism for Oxidation of Pollutants. Chemical Communications, 52, 9566-9569. https://doi.org/10.1039/C6CC02973F |
[68] |
Kiruri, L.W., Dellinger, B. and Lomnicki, S. (2013) Tar Balls from Deep Water Horizon Oil Spill: Environmentally Persistent Free Radicals (EPFR) Formation during Crude Weathering. Environmental Science & Technology, 47, 4220-4226. https://doi.org/10.1021/es305157w |
[69] |
Valavanidis, A., Fiotakis, K., Bakeas, E., et al. (2005) Electron Paramagnetic Resonance Study of the Generation of Reactive Oxygen Species Catalysed by Transition Metals and Quinoid Redox Cycling by Inhalable Ambient Particulate Matter. Redox Report, 10, 37-51. https://doi.org/10.1179/135100005X21606 |
[70] |
Shi, Y.F., Zhu, K.C., Dai, Y.C., et al. (2020) Evolution and Stabilization of Environmental Persistent Free Radicals during the Decomposition of Lignin by Laccase. Chemosphere, 248, Article ID: 125931. https://doi.org/10.1016/j.chemosphere.2020.125931 |
[71] |
Vejerano, E., Lomnicki, S. and Dellinger, B. (2012) Lifetime of Combustion-Generated Environmentally Persistent Free Radicals on Zn(II)O and Other Transition Metal Oxides. Journal of Environmental Monitoring, 14, 2803-2806. https://doi.org/10.1039/c2em30545c |
[72] |
Patterson, M.C., Keilbart, N.D., Kiruri, L.W., et al. (2013) EPFR Formation from Phenol Adsorption on Al2O3 and TiO2: EPR and EELS Studies. Chemical Physics, 422, 277-282. https://doi.org/10.1016/j.chemphys.2012.12.003 |
[73] |
Sutton, R. and Sposito, G. (2005) Molecular Structure in Soil Humic Substances: The New View. Environmental Science & Technology, 39, 9009-9015. https://doi.org/10.1021/es050778q |
[74] |
Parsons, J.W. (1982) Humus Chemistry: Genesis, Composition, Reactions. Soil Science, 135, 129-130. https://doi.org/10.1097/00010694-198302000-00014 |
[75] |
Jezierski, A., Drozd, J., Jerzykiewicz, M., et al. (1998) EPR in the Environmental Control: Copper Complexes and Free Radicals in Soil and Municipal Solid Waste Compost. Applied Magnetic Resonance, 14, 275-282. https://doi.org/10.1007/BF03161894 |
[76] |
Wang, X., Li, Y. and Dong, D. (2008) Sorption of Pentachlorophenol on Surficial Sediments: The Roles of Metal Oxides and Organic Materials with Co-Existed Copper Present. Chemosphere, 73, 1-6. https://doi.org/10.1016/j.chemosphere.2008.06.024 |
[77] |
Jia, H.Z., Li, L., Chen, H.X., et al. (2015) Exchangeable Cations-Mediated Photodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) on Smectite Surface under Visible Light. Journal of Hazardous Materials, 287, 16-23. https://doi.org/10.1016/j.jhazmat.2015.01.040 |
[78] |
Meng, J.J., Smirnova, T.I., Song, X., et al. (2014) Identification of Free Radicals in Pyrolysis Oil and Their Impact on Bio-Oil Stability. RSC Advances, 4, 29840-29846. https://doi.org/10.1039/C4RA02007C |
[79] |
Paul, A., Stosser, R. and Zehl, A. (2006) Nature and Abundance of Organic Radicals in Natural Organic Matter: Effect of pH and Irradiation. Environmental Science & Technology, 40, 5897-5903. https://doi.org/10.1021/es060742d |
[80] |
Grosjean, E., Grosjean, D., Fraser, M.P., et al. (1996) Air Quality Model Evaluation Data for Organics. 3. Peroxyacetyl Nitrate and Peroxypropionyl Nitrate in Los Angeles Air. Environmental Science & Technology, 30, 2704-2714. https://doi.org/10.1021/es9508535 |
[81] |
Squadrito, G.L., Cueto, R., Dellinger, B., et al. (2001) Quinoid Redox Cycling as a Mechanism for Sustained Free Radical Generation by Inhaled Airborne Particulate Matter. Free Radical Biology & Medicine, 31, 1132-1138. https://doi.org/10.1016/S0891-5849(01)00703-1 |
[82] |
Valavanidis, A., Fiotakis, K., Vlahogianni, T., et al. (2006) Determination of Selective Quinones and Quinoid Radicals in Airborne Particulate Matter and Vehicular Exhaust Particles. Environmental Chemistry, 3, 118-123. https://doi.org/10.1071/EN05089 |
[83] |
Dellinger, B., Pryor, W.A., Cueto, R., et al. (2000) The Role of Combustion-Generated Radicals in the Toxicity of PM2.5. Proceedings of the Combustion Institute, 28, 2675-2681. https://doi.org/10.1016/S0082-0784(00)80687-6 |
[84] |
Wang, P., Pan, B., Li, H., et al. (2018) The Overlooked Occurrence of Environmentally Persistent Free Radicals in an Area With Low-Rank Coal Burning, Xuanwei, China. Environmental Science & Technology, 52, 1054-1061. https://doi.org/10.1021/acs.est.7b05453 |
[85] |
Zhu, Y.H., Wei, J., Liu, Y.T., et al. (2019) Assessing the Effect on the Generation of Environmentally Persistent Free Radicals in Hydrothermal Carbonization of Sewage Sludge. Scientific Reports, 9, Article No. 17092. https://doi.org/10.1038/s41598-019-53781-3 |
[86] |
Voncina, E. and Solmajer, T. (2002) Thermolysis of 2,4,6-Trichlorophenol Chemisorbed on Aluminium Oxides as Example of Fly Ash Mediated Surface Catalysis Reaction in PCDD/PCDF Formation. Chemosphere, 46, 1279-1286. https://doi.org/10.1016/S0045-6535(01)00258-2 |
[87] |
Grinberg, O.Y., Williams, B.B., Ruuge, A.E., et al. (2007) Oxygen Effects on the EPR Signals from Wood Charcoals Experimental Results and the Development of a Model. The Journal of Physical Chemistry B, 111, 13316-13324. https://doi.org/10.1021/jp072656l |
[88] |
Lehnera, A.F., Hornb, J. and Flesherb, J.W. (2004) Formation of Radical Cations in a Model for the Metabolism of Aromatic Hydrocarbons. Biochemical and Biophysical Research Communications, 322, 1018-1023. https://doi.org/10.1016/j.bbrc.2004.08.017 |
[89] |
Rupert, J.P. (1973) Electron Spin Resonance Spectra of Interlamellar Copper(II)-Arene Complexes on Montmorillonite. The Journal of Physical Chemistry, 77, 784-790. https://doi.org/10.1021/j100625a011 |
[90] |
Yang, J., Pan, B., Li, H., et al. (2016) Degradation of p-Nitrophenol on Biochars: Role of Persistent Free Radicals. Environmental Science & Technology, 50, 694-700. https://doi.org/10.1021/acs.est.5b04042 |
[91] |
Zhao, N., Yin, Z., Liu, F., et al. (2018) Environmentally Persistent Free Radicals Mediated Removal of Cr(VI) from Highly Saline Water by Corn Straw Biochars. Bioresource Technology, 260, 294-301. https://doi.org/10.1016/j.biortech.2018.03.116 |
[92] |
Fang, G.D., Gao, J., Liu, C., et al. (2014) Key Role of Persistent Free Radicals in Hydrogen Peroxide Activation by Biochar: Implications to Organic Contaminant Degradation. Environmental Science & Technology, 48, 1902-1910. https://doi.org/10.1021/es4048126 |
[93] |
Fang, G.D., Liu, C., Gao, J., et al. (2015) Manipulation of Persistent Free Radicals in Biochar to Activate Persulfate for Contaminant Degradation. Environmental Science & Technology, 49, 5645-5653. https://doi.org/10.1021/es5061512 |
[94] |
Fang, G.D., Liu, C., Gao, J., et al. (2014) New Insights into the Mechanism of the Catalytic Decomposition of Hydrogen Peroxide by Activated Carbon: Implications for Degradation of Diethyl Phthalate. Industrial & Engineering Chemistry Research, 53, 19925-19933. https://doi.org/10.1021/ie504184r |
[95] |
Fang, G.D., Gao, J., Dionysiou, D.D., et al. (2013) Activation of Persulfate by Quinones: Free Radical Reactions and Implication for the Degradation of PCBs. Environmental Science & Technology, 47, 4605-4611. https://doi.org/10.1021/es400262n |
[96] |
Fang, G.D., Zhu, C.Y., Dionysiou, D.D., et al. (2015) Mechanism of Hydroxyl Radical Generation from Biochar Suspensions: Implications to Diethyl Phthalate Degradation. Bioresource Technology, 176, 210-217. https://doi.org/10.1016/j.biortech.2014.11.032 |
[97] |
Luo, L.S., Wu, D., Dai, D.J., et al. (2017) Synergistic Effects of Persistent Free Radicals and Visible Radiation on Peroxymonosulfate Activation by Ferric Citrate for the Decomposition of Organic Contaminants. Applied Catalysis B: Environmental, 205, 404-411. https://doi.org/10.1016/j.apcatb.2016.12.060 |