[1] |
WALLEMACQ, P., BELOW, R. and MCLEAN, D. Economic losses, Poverty and Disasters 1998-2017. Google Scholar, 2017. |
[2] |
UNISDR-CRED. The human cost of weather related disaster 1995-2015. Paris: United Nations Office for Disaster Risk Reduction (UNISDR) and Centre for Research on the Epidemiology Disaster (CRED), 2015: 30. |
[3] |
邱海军, 曹明明, 胡胜, 等. 近60a来中国洪涝灾情变化趋势持续性和周期性研究[J]. 地球与环境, 2014, 42(1): 17-24. QIU Haijun, CAO Mingming, HU Sheng, et al. Susceptibility and periodicity of flood disasters since the 1950s in China. Earth and Environment, 2014, 42(1): 17-24. (in Chinese) |
[4] |
DIEPERINK, C., HEGGER, D. L. T., BAKKER, M. H. N., et al. Recurrent governance challenges in the implementation and alignment of flood risk management strategies: A review. Water Resources Management, 2016, 30(13): 4467-4481. https://doi.org/10.1007/s11269-016-1491-7 |
[5] |
魏一鸣, 范英, 金菊良. 洪水灾害风险分析的系统理论[J]. 管理科学学报, 2001, 4(2): 7-11. WEI Yiming, FAN Ying and JIN Juliang. System theory for risk analysis of flood disaster. Journal of Management Sciences in China, 2001, 4(2): 7-11. (in Chinese) |
[6] |
WARD, P. J., et al. Review article: Natural hazard risk assessments at the global scale. Natural Hazards and Earth System Sciences, 2020, 20(4): 1069-1096. https://doi.org/10.5194/nhess-20-1069-2020 |
[7] |
SALMAN, A. M., LI, Y. Flood risk assessment, future trend modeling, and risk communication: A review of ongoing research. Natural Hazards Review, 2018, 19(3): 04018011. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000294 |
[8] |
HAQUE, D. M. E., MIMI, A., MAZUMDER, R. K. and SALMAN, A. M. Evaluation of natural hazard risk for coastal districts of Bangladesh using the INFORM approach. International Journal of Disaster Risk Reduction, 2020, 48: 101569. https://doi.org/10.1016/j.ijdrr.2020.101569 |
[9] |
许崇育, 陈华, 郭生练. 变化环境下水文模拟的几个关键问题和挑战[J]. 水资源研究, 2013, 2(2): 85-95. XU Chongyu, CHEN Hua and GUO Shenglian. Hydrological modeling in a changing environment: Issues and challenges. Journal of Water Resources Research, 2013, 2(2): 85-95. (in Chinese) |
[10] |
徐宗学, 程磊. 分布式水文模型研究与应用进展[J]. 水利学报, 2010, 39(9): 1009-1017. XU Zongxue, CHENG Lei. Progress on studies and applications of the Distributed Hydrological Models. Journal of Hydraulic Engineering, 2010, 39(9): 1009-1017. (in Chinese) |
[11] |
TENG, J., JAKEMAN, A. J., VAZE, J., et al. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environmental Modelling & Software, 2017, 90: 201-216. https://doi.org/10.1016/j.envsoft.2017.01.006 |
[12] |
DEUTSCH, M., RUGGLES, F. Optical data processing and projected applications of the ERTS-1 imagery covering the 1973 Mississippi River Valley floods. Water Resources Bulletin, 1974, 10(5): 1023-1039. https://doi.org/10.1111/j.1752-1688.1974.tb00622.x |
[13] |
MEJIA-NAVARRO, M., WOHL, E. E. Geological hazard and risk evaluation using GIS: Methodology and model applied to Medellin, Colombia. Environmental & Engineering Geoence, 1994, 31(4): 459-481. https://doi.org/10.2113/gseegeosci.xxxi.4.459 |
[14] |
THIRUMALAIAH, K., DEO, M. River stage forecasting using artificial neural networks. Hydrologic Engineering, 1998, 3: 26-32. https://doi.org/10.1061/(ASCE)1084-0699(1998)3:1(26) |
[15] |
陈亚丹. 区域洪涝灾害风险评价方法研究[C]//第31届中国气象学会年会. 北京, 2014. CHEN Yadan. Study on risk assessment method of regional flood disaster. In: The 31st annual meeting of China Meteorological Society. Beijing, 2014. (in Chinese) |
[16] |
HUNTER, N. M., BATES, P. D., HORRITT, M. S., et al. Simple spatially-distributed models for predicting flood inundation: A review. Geomorphology, 2007, 90(3-4): 208-225. https://doi.org/10.1016/j.geomorph.2006.10.021 |
[17] |
CHEN, Y., YU, J. and KHAN, S. Spatial sensitivity analysis of multi-criteria weights in GIS-based landsuitability evaluation. Environmental Modelling & Software, 2010, 25(12): 1582-1591. https://doi.org/10.1016/j.envsoft.2010.06.001 |
[18] |
XU, H., MA, C., LIAN, J., et al. Urban flooding risk assessment based on an integrated k-means cluster algorithm and improved entropy weight method in the region of Haikou, China. Journal of Hydrology, 2018, 563: 975-986. https://doi.org/10.1016/j.jhydrol.2018.06.060 |
[19] |
EMANUEL, K., SUNDARARAJAN, R. and WILLIAMS, J. Hurri-canes and global warming: Results from downscaling IPCC AR4 simulations. Bulletin of the American Meteorological Society, 2008, 89(3): 347-367. https://doi.org/10.1175/BAMS-89-3-347 |
[20] |
ZENG, F., LAI, C. and WANG, Z. Flood risk assessment based on principal component analysis for Dongjiang River basin. In: International conference on remote sensing. Nanjing: IEEE, Piscataway, NJ, 2012. https://doi.org/10.1109/RSETE.2012.6260577 |
[21] |
王兆礼, 赖成光, 陈晓宏. 基于熵权的洪灾风险空间模糊综合评价模型[J]. 水力发电学报, 2012, 31(5): 35-40. WANG Zhaoli, LAI Chengguang and CHEN Xiaohong. Spatially fuzzy comprehensive assessment model for flood hazard risk based on entropy weight. Journal of Hydroelectric Engineering, 2012, 31(5): 35-40. (in Chinese) |
[22] |
RAHMATI, O., POURGHASEMI, H. R. and ZEINIVAND, H. Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto International, 2016, 31(1): 42-70. https://doi.org/10.1080/10106049.2015.1041559 |
[23] |
SHAFAPOUR, T. M., LALIT, K. The application of a Demp-ster-Shafer-based evidential belief function in flood susceptibility mapping and comparison with frequency ratio and logistic regression methods. Environmental Earth Sciences, 2018, 77(13): 490. |
[24] |
DANUMAH, J. H., ODAI, S. N., SALEY, B. M., et al. Flood risk assessment and mapping in Abidjan district using multi-criteria analysis (AHP) model and geo-information techniques, (cote d’ivoire). Geoenvironmental Disasters, 2016, 3(1): 10. https://doi.org/10.1186/s40677-016-0044-y |
[25] |
MOSAVI, A., OZTURK, P. and CHAU, K. Flood prediction using machine learning models: Literature review. Water, 2018, 10(11): 1536. https://doi.org/10.3390/w10111536 |
[26] |
ABBOT, J., MAROHASY, J. Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks. Atmospheric Research, 2014, 138: 166-178. https://doi.org/10.1016/j.atmosres.2013.11.002 |
[27] |
JAJARMIZADEH, M., KAKAEILAFDANI, E., HARUN, S., et al. Application of SVM and SWAT models for monthly streamflow prediction, a case study in South of Iran. Ksce Journal of Civil Engineering, 2015, 19(1): 345-357. https://doi.org/10.1007/s12205-014-0060-y |
[28] |
KHOSRAVI, K., et al. A comparative assessment of decision trees algorithms for flashflood susceptibility modeling at Haraz watershed, northern Iran. Science of the Total Environment, 2018, 627: 744. https://doi.org/10.1016/j.scitotenv.2018.01.266 |
[29] |
ZHAO, G., PANG, B., XU, Z. Y., et al. Mapping flood susceptibility in mountainous areas on a national scale in China. Science of the Total Environment, 2018, 615: 1133-1142. https://doi.org/10.1016/j.scitotenv.2017.10.037 |
[30] |
DOYCHEVA, K., HORN, G., KOCH, C., et al. Assessment and weighting of meteorological ensemble forecast members based on supervised machine learning with application to runoff simulations and flood warning. Advanced Engineering Informatics, 2017, 33: 427-439. https://doi.org/10.1016/j.aei.2016.11.001 |
[31] |
WU, Z. N., ZHOU, Y. H., WANG, H. L., et al. Depth prediction of urban flood under different rainfall return periods based on deep learning and data warehouse. Science of the Total Environment, 2020, 716: 137077. https://doi.org/10.1016/j.scitotenv.2020.137077 |
[32] |
TIWARI, M. K., CHATTERJEE, C. Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach. Journal of Hydrology, 2010, 394(3-4): 458-470. https://doi.org/10.1016/j.jhydrol.2010.10.001 |
[33] |
宋文龙, 路京选, 杨昆, 等. 地表水体遥感监测研究进展[J]. 卫星应用, 2019(11): 41-47. SONG Wenlong, LU Jingxuan, YANG Kun, et al. Advances in remote sensing monitoring of surface water. Satellite Application, 2019(11): 41-47. (in Chinese) |
[34] |
GSTAIGER, V., HUTH, J., GEBHARDT, S., et al. Multi-sensoral and automated derivation of inundated areas using Terrasar-X and ENVISAT ASAR data. International Journal of Remote Sensing, 2012, 33(22): 7291-7304. https://doi.org/10.1080/01431161.2012.700421 |
[35] |
丁志雄, 李纪人, 李琳. 基于GIS格网模型的洪水淹没分析方法[J]. 水利学报, 2004(6): 1-6. DING Zhixiong, LI Jiren and LI lin. Method for flood submergence analysis based on GIS grid model. Journal of Hydraulic Engineering, 2004(6): 1-6. (in Chinese) |
[36] |
易永红, 陈秀万, 吴欢. 基于遥感信息的淹没水深算法研究[J]. 地理与地理信息科学, 2005, 21(3): 26-29. YI Yonghong, CHEN Xiuwan and WU Huan. An algorithm for inundated depth calculation of flood based on remotely sensed data. Geography and Geo-Information Science, 2005, 21(3): 26-29. (in Chinese) |
[37] |
李加林, 曹罗丹, 浦瑞良. 洪涝灾害遥感监测评估研究综述[J]. 水利学报, 2014, 45(3): 253-260. LI Jialin, CAO Luodan, PU Ruiliang, et al. Progresses on monitoring and assessment of flood disaster in remote sensing. Journal of Hydraulic Engineering, 2014, 45(3): 253-260. (in Chinese) |
[38] |
MEKANIK, F., IMTEAZ, M. A., GATO-TRINIDAD, S., et al. Multiple regression and artificial neural network for long-term rainfall forecasting using large scale climate modes. Journal of Hydrology, 2013, 503: 11-21. https://doi.org/10.1016/j.jhydrol.2013.08.035 |
[39] |
王浩, 李扬, 任立良, 等. 水文模型不确定性及集合模拟总体框架[J]. 水利水电技术, 2015, 46(6): 21-26. WANG Hao, LI Yang, REN Liliang, et al. Uncertainty of hydrologic model and general framework of ensemble simulation. Water Resources and Hydropower Engineering, 2015, 46(6): 21-26. (in Chinese) |
[40] |
LIN, K. R., CHEN, H. Y., XU, C. Y., et al. Assessment of flash flood risk based on improved analytic hierarchy process method and integrated maximum likelihood clustering algorithm. Journal of Hydrology, 2020, 584: 124696. https://doi.org/10.1016/j.jhydrol.2020.124696 |
[41] |
LI, F., LI, Z. K. and YANG, C. B. Risk assessment of levee engineering based on Triangular Fuzzy Number and analytic network process and its application. In: Modeling risk management in sustainable construction, computational risk management. Berlin: Springer, 2011: 415-426. https://doi.org/10.1007/978-3-642-15243-6_48 |
[42] |
CHEN, H. L., ITO, Y., SAWAMUKAI, M., et al. Flood hazard assessment in the Kujukuri Plain of Chiba Prefecture, Japan, based on GIS and multicriteria decision analysis. Natural Hazards, 2015, 78(1): 105-120. https://doi.org/10.1007/s11069-015-1699-5 |
[43] |
BIJEESH, T. V., NARASIMHAMURTHY, K. N. Surface water detection and delineation using remote sensing images: A review of methods and algorithms. Sustainable Water Resources Management, 2020, 6: 68. https://doi.org/10.1007/s40899-020-00425-4 |
[44] |
占车生, 宁理科, 邹靖, 等. 陆面水文–气候耦合模拟研究进展[J]. 地理学报, 2018, 73(5): 893-905. ZHAN Chesheng, NING Like, ZOU Jing, et al. A review on the fully coupled atmosphere-hydrology simulations. Acta Geographica Sinica, 2018, 73(5): 893-905. (in Chinese) |
[45] |
FRENCH, J., MAWDSLEY, R., FUJIYAMA, T., et al. Combining machine learning with computational hydrodynamics for prediction of tidal surge inundation at estuarine ports. Procedia IUTAM, 2017, 25: 28-35. https://doi.org/10.1016/j.piutam.2017.09.005 |