[1] |
Maness, P.C., Yu, J., Eckert, C. and and Ghirardi, M.L. (2009) Photobiological Hydrogen Production: Efforts to Scale up the Capacity of Green Algae and Cyanobacteria to Use Sunlight to Convert Water into Hydrogen Gas for Energy Use. Microbe, 4, 275-280. https://doi.org/10.1128/microbe.4.275.1 |
[2] |
Netravali, A.N. and Chabba, S. (2003) Composites Get Greener. Materials Today, 6, 22-29. https://doi.org/10.1016/S1369-7021(03)00427-9 |
[3] |
Rittmann, B.E. (2008) Opportunities for Renewable Bioenergy Using Microorganisms. Biotechnology and Bioengineering, 100, 203-212. https://doi.org/10.1002/bit.21875 |
[4] |
Chisti, Y. (2007) Biodiesel from Microalgae. Biotechnology Advances, 25, 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001 |
[5] |
Dismukes, C.G., Carrieri, D., Bennette, N., Ananyev, G.M. and Posewitz, M.C. (2008) Aquatic Photorophs: Efficient Alternatives to Land-Based Crops for Biofuels. Current Opinion in Biotechnology, 19, 235-240. https://doi.org/10.1016/j.copbio.2008.05.007 |
[6] |
Sheehan, J., Dunahay, T., Benemann, J. and Roessler, P. (1998) Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae; Close-Out Report. National Renewable Energy Lab, Golden, 2. https://doi.org/10.2172/15003040 |
[7] |
Edwards, M. (2010) Algal Species Selection. https://algaeindustrymagazine.com/algae-101-part-seven-algal-species-selection/ |
[8] |
Da Rós, P.C.M., Silva, C.S.P., Silva-Stenico, M.E. and Fiore, M.F. and de Castro, H.F. (2012) Microcystis aeruginosa Lipids as Feedstock for Biodiesel Synthesis by Enzymatic Route. Journal of Molecular Catalysis B: Enzymatic, 84, 177-182. https://doi.org/10.1016/j.molcatb.2012.04.007 |
[9] |
Babu, B. and Wu, J.T. (2008) Production of Natural Butylated Hydroxytoluene as an Antioxidant by Freshwater Phytoplankton. Journal of Phycology, 44, 1447-1454. https://doi.org/10.1111/j.1529-8817.2008.00596.x |
[10] |
Mandal, S. and Mallick, N. (2009) Microalga Scenedesmus obliquus as a Potential Source for Biodiesel Production. Applied Microbiology and Biotechnology, 84, 281-291. https://doi.org/10.1007/s00253-009-1935-6 |
[11] |
Li, X., Hu, H.-Y., Yang, J. and Wu, Y.-H. (2010) Enhancement Effect of Ethyl-2-Methyl Acetoacetate on TAGs Production by a Freshwater Microalga, Scenedesmus sp. LX1. Biore-source Technology, 101, 9819-9821. https://doi.org/10.1016/j.biortech.2010.07.103 |
[12] |
Ren, H.Y., Liu, B.F., Ma, C., Zhao, L. and Ren, N.-Q. (2013) A New Lipid-Rich Microalga Scenedesmus sp. Strain R-16 Isolated Using Nile Red Staining: Effects of Carbon and Ni-trogen Sources and Initial pH on the Biomass and Lipid Production. Biotechnology for Biofuels, 6, Article No. 143. https://doi.org/10.1186/1754-6834-6-143 |
[13] |
Jaeger, L., Verbeek, R.E.M., Draaisma, R.B., Martens, D.E., Springer, J., Eggink, G., et al. (2014) Superior Triacylglycerol (TAG) Accumulation in Starchless Mutants of Scenedes-mus obliquus: (I) Mutant Generation and Characterization. Biotechnology for Biofuels, 7, Article No. 69. https://doi.org/10.1186/1754-6834-7-69 |
[14] |
Breuer, G., de Jaeger, L., Artus, V.P.G., Martens, D.E, Springer, J., Draaisma, R.B., et al. (2014) Superior Triacylglycerol (TAG) Accumulation in Starchless Mutants of Scenedesmus obliquus: (II) Evaluation of TAG Yield and Productivity in Controlled Photobioreactors. Biotechnology for Biofuels, 7, Article No. 70. https://doi.org/10.1186/1754-6834-7-70 |
[15] |
Rodolfi, L., Zittelli, G.C., Bassi, N., Padovani, G., Biondi, N., Bonini, G. and Tredici, M.R. (2009) Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low-Cost Photobioreactor. Biotechnology and Bioengineering, 102, 100-112. https://doi.org/10.1002/bit.22033 |
[16] |
Li, X., Han, X. and Wu, Q. (2007) Large-Scale Biodiesel Production from Microalga Chlorella protothecoides through Heterotrophic Cultivation in Bioreactors. Biotechnology and Bioengineering, 98, 764-771. https://doi.org/10.1002/bit.21489 |
[17] |
Hellingwerf, K.J. and de Mattos, M.J.T. (2009) Alternative Routes to Biofuels: Light-Driven Biofuel Formation from CO2 and Water Based on the ‘Photanol’ Approach. Journal of Biotechnology, 142, 87-90. https://doi.org/10.1016/j.jbiotec.2009.02.002 |
[18] |
Deng, M.D. and Coleman, J.R. (1999) Ethanol Synthesis by Genetic Engineering in Cyanobacteria. Applied and Environmental Microbiology, 65, 523-528. https://doi.org/10.1128/AEM.65.2.523-528.1999 |
[19] |
Polle, J.E.W., Kanakagiri, S., Jin, E.S., Masuda, T. and Melis, A. (2002) Truncated Chlorophyll Antenna Size of the Photosystems—A Practical Method to Improve Microalgal Productivity and Hydrogen Production in Mass Culture. International Journal of Hydrogen Energy, 27, 11-12. https://doi.org/10.1016/S0360-3199(02)00116-7 |
[20] |
Cazzola, P. (2010) Algae for Biofuels Production Process Description, Life Cycle Assessment and Some Information on Cost. Organisation for Economic Co-Operation and Development (OECD) and International Energy Agency (IEA), Paris. |
[21] |
Saranya, A., Prabavathi, P. and Sudha, M. (2015) Perspectives and Advances of Microalgae as Feedstock for Biodiesel Production. International Journal of Cur-rent Microbiology and Applied Sciences, 4, 766-775. https://www.ijcmas.com/vol-4-9/A.%20Saranya,%20et%20al.pdf |
[22] |
Yang, Z., Guo, R., Xu, X., Fan, X. and Li, X. (2011) Thermo-Alkaline Pretreatment of Lipid-Extracted Microalgal Biomass Residues Enhances Hydrogen Production. Journal of Chemical Technology and Biotechnology, 86, 454-460. https://doi.org/10.1002/jctb.2537 |
[23] |
Anastasios, M. (2002) Green Alga Hydrogen Production: Progress, Challenges and Prospects. International Journal of Hydrogen Energy, 27, 1217-1228. https://doi.org/10.1016/S0360-3199(02)00110-6 |
[24] |
Chochois, V., Dauvillee, D. and Beyly, A. (2009) Hydrogen Production in Chlamydomonas: Photosystem II-Dependent and Independent Pathways Differ in Their Requirement for Starch Metabolism. Plant Physiology, 151, 631-640. https://doi.org/10.1104/pp.109.144576 |
[25] |
Panti, L., Chávez, P., Robledo, D. and Patiño, R. (2007) A Solar Photobioreactor for the Production of Biohydrogen from Microalgae. SPIE Optics + Photonics for Sustainable Energy, San Diego, Article ID: 66500Z. https://doi.org/10.1117/12.732468 |
[26] |
Hirano, A., Ueda, R., Hirayama, S. and Ogushi, Y. (1997) CO2 Fixation and Ethanol Production with Microalgal Photosynthesis and Intracellular Anaerobic Fermentation. Energy, 22, 137-142. https://doi.org/10.1016/S0360-5442(96)00123-5 |
[27] |
Ho, S.-H., Huang, S.-W. and Chen, C.-Y. (2013) Bioethanol Production Using Carbohydrate-Rich Microalgae Biomass as Feedstock. Bioresource Technology, 135, 191-198. https://doi.org/10.1016/j.biortech.2012.10.015 |
[28] |
Golueke, C.G. and Oswald, W.J. (1959) Biological Conversion of Light Energy to the Chemical Energy of Methane. Journal of Applied Microbiology, 7, 219-227. https://doi.org/10.1128/am.7.4.219-227.1959 |
[29] |
Salim, S., Bosma, R., Verrmue, M.H. and Wijffels, R.H. (2011) Harvesting of Microalgae by Bioflocculation. Journal of Applied Phycology, 23, 849-855. https://doi.org/10.1007/s10811-010-9591-x |
[30] |
Wu, Z., Zhu, Y., Huang, W., Zhang, C., Li, T., Zhang, Y., et al. (2012) Evaluation of Flocculation Induced by pH Increase for Harvesting Microalgae and Reuse of Flocculated Medium. Bioresource Technology, 110, 496-502. https://doi.org/10.1016/j.biortech.2012.01.101 |
[31] |
Liu, J., Zhu, Y., Tao, Y., Zhang, Y., Li, A., Li, T., et al. (2013) Freshwater Microalgae Harvested via Flocculation Induced by pH Decrease. Biotechnology for Biofuels, 6, Article No. 98. https://doi.org/10.1186/1754-6834-6-98 |
[32] |
Bligh, E.G. and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917. https://doi.org/10.1139/o59-099 |
[33] |
Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. (2006) Commercial Applications of Microalgae. Journal of Bioscience and Bioengineering, 101, 87-96. https://doi.org/10.1263/jbb.101.87 |
[34] |
Benemanm, J.R. (2008) Overview: Algae Oil to Biofuel (Annotated Presentation). Workshop: Algal Oil Jet Fuel Production, Arlington, 19 February 2008, 1-63. |
[35] |
Monteiro, C.M., Cas-tro, P.M.L. and Xavier Malcata, F. (2009) Use of the Microalga Scenedesmus obliquus to Remove Cadmium Cations from Aqueous Solutions. World Journal of Microbiology and Biotechnology, 25, 1573-1578. https://doi.org/10.1007/s11274-009-0046-y |
[36] |
Ruiz-Marin, A., Canedo-Lopez, Y., Campos-Garcia, S., Sabido-Perez, M.Y. and Zavala-Loria, J. (2013) Biodegradation of Wastewater Pollutants by Activated Sludge Coimmobilized with Scenedesmus obliquus. Agrociencia, 47, 429- 441. |
[37] |
Hodaifa, G., Martnez, M.E. and Sanchez, S. (2009) Daily Doses of Light in Relation to the Growth of Scenedesmus obliquus in Diluted Three-Phase Live Mill Wastewater. Journal of Chemical Technology & Biotechnology, 84, 1550- 1558. https://doi.org/10.1002/jctb.2219 |
[38] |
Zhang, T.Y., Wu, Y.H. and Hu, H.Y. (2014) Domestic Wastewater Treatment and Biofuel Production by Using Microalga Scenedesmus sp. ZTYI. Water Science and Technology, 69, 2492-2496. https://doi.org/10.2166/wst.2014.160 |
[39] |
Mata, T.M., Martins, A.A. and Caetano, N.S. (2009) Microalgae for Biodiesel Production and Other Applications: A Review. Renewable and Sustainable Energy Reviews, 14, 217-232. https://doi.org/10.1016/j.rser.2009.07.020 |
[40] |
Luisa, G. and Cristina, O.A. (2009) Microalgae as a Raw Material for Biofuels Production. Journal of Industrial Microbiology and Biotechnology, 36, 269-274. |
[41] |
Sivakumar, G., Vail, D.R., Xu, J., Burner, D.M., Lay Jr., J.O., Ge, X. and Weathers, P.J. (2009) Bioethanol and Biodiesel: Altermative Liqnid Fuels for Future Generations. Engineering in Life Sciences, 10, 8-18. https://doi.org/10.1002/elsc.200900061 |