[1] |
Williamson, L.M. and Devine, D.V. (2013) Challenges in the Management of the Blood Supply. Lancet, 381, 1866-1875. https://doi.org/10.1016/S0140-6736(13)60631-5 |
[2] |
Greinacher, A., Fendrich, K. and Hoffmann, W. (2010) Demographic Changes: The Impact for Safe Blood Supply. Special Issue: XXXIst International Congress of the ISBT, 5, 239-243. https://doi.org/10.1111/j.1751-2824.2010.01377.x |
[3] |
Aggarwal, S. and Sharma, V. (2012) Attitudes and Problems Related to Voluntary Blood Donation in India: A Short Communication. Annals of Tropical Medicine and Public Health, 5, 50-52. |
[4] |
Moderypawlowski, C. L., Tian, L.L. and Pan, V. (2013) Synthetic Approaches to RBC Mimicry and Oxygen Carrier Systems. Biomacromolecules, 14, 939-948. https://doi.org/10.1021/bm400074t |
[5] |
Chang, T.M.S. (2012) From Artificial Red Blood Cells, Oxygen Carriers, and Oxygen Therapeutics to Artificial Cells, Nanomedicine, and Beyond. Artificial Cells, Blood Substitutes, and Biotechnology, 40, 197-199. https://doi.org/10.3109/10731199.2012.662408 |
[6] |
Napolitano, L.M. (2009) Hemoglobin-Based Oxygen Carriers: First, Second or Third Generation? Human or Bovine? Where Are We Now. Critical Care Clinics, 25, 279-301. https://doi.org/10.1016/j.ccc.2009.01.003 |
[7] |
Habler, O., Pape, A. and Meier, J. (2005) Artificial Oxygen Carriers as an Alternative to Red Blood Cell Transfusion. Der Anaesthesist, 54, 741-754. https://doi.org/10.1007/s00101-005-0893-3 |
[8] |
杨懿铭, 王永彬, 范华骅. 抗氧化酶交联的多聚血红蛋白的制备及其自氧化稳定性研究[J]. 临床输血与检验, 2009, 11(3): 199-203. |
[9] |
Elmer, J., Alam, H.B. and Wilcox, S.R. (2012) Hemoglobin-Based Oxygen Carriers for Hemorrhagic Shock. Resuscitation, 83, 285-292. https://doi.org/10.1016/j.resuscitation.2011.09.020 |
[10] |
万英, 周剑涛. 血红蛋白氧载体研究进展[J]. 中国生化药物杂志, 2004(3): 178-180. |
[11] |
Tsai, A.G., Cabrales, P. and Intaglietta, M. (2004) Oxygen-Carrying Blood Substitutes: A Microvascular Perspective. Expert Opinion on Biological Therapy, 4, 1147-1157. https://doi.org/10.1517/14712598.4.7.1147 |
[12] |
Schechter, A.N. and Gladwin, M.T. (2003) Hemoglobin and the Paracrine and Endocrine Functions of Nitric Oxide. New England Journal of Medicine, 348, 1483-1485. https://doi.org/10.1056/NEJMcibr023045 |
[13] |
Chang, T.M.S. (1971) Stabilisation of Enzymes by Microencapsulation with a Concentrated Protein Solution or by Microencapsulation Followed by Cross-Linking with Glutaraldehyde. Biochemical and Biophysical Research Communications, 44, 1531-1536. https://doi.org/10.1016/S0006-291X(71)80260-7 |
[14] |
Li, T., Yu, R. and Zhang, H.H. (2006) A Method for Purification and Viral Inactivation of Human Placenta Hemoglobin. Artificial Cells Blood Substitutes and Immobilization Biotechnology, 34, 175-188. https://doi.org/10.1080/10731190600580231 |
[15] |
Freytag, J.W. and Templeton, D. (1997) OptroTM (Recombinant Human Hemoglobin): A Therapeutic for the Delivery of Oxygen and the Restoration of Blood Volume in the Treatment of Acute Blood Loss in Trauma and Surgery, in Red Cell Substitutes; Basic Principles and Clinical Application. Marcel Dekker, 325-334. |
[16] |
Nelson, D.J. (1998) Blood and Hem AssistTM (DCLHb): Potentially a Complementary Therapeutic Team, in Blood Substitutes: Principles, Methods, Products and Clinical Trials. Basel, Karger, 39-57. |
[17] |
Burhop, K., Gordon, D. and Estep, T. (2004) Review of Hemoglobin-Induced Myocardial Lesions. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 32, 353-374. |
[18] |
Shie, J.W., Yogeswaran, U. and Chen, S.M. (2009) Haemoglobin Immobilized on Nafion Modified Multi-Walled Carbon Nanotubes for O2, H2O2 and CCl3COOH Sensors. Talanta, 78, 896-902. https://doi.org/10.1016/j.talanta.2008.12.063 |
[19] |
Chang, T.M.S. (1997) Blood Substitutes: Principles, Methods, Products and Clinical Trials. Basel, Karger, 62-67. |
[20] |
Yu, B., Liu, Z. and Chang, T.M.S. (2009) Polyhemoglobin with Different Percentage of Tetrameric Hemoglobin and Effects on Vasoactivity and Electrocardiogram. Artificial Cells, Blood Substitutes, and Biotechnology, 34, 159-173. https://doi.org/10.1080/10731190600580223 |
[21] |
Matheson, B., Kwansa, H.E. and Bucci, E. (2002) Vascular Response to Infusions of a Nonextravasating Hemoglobin Polymer. Journal of Applied Physiology, 93, 1479-1486. https://doi.org/10.1152/japplphysiol.00191.2002 |
[22] |
Chang, T.M.S. (2003) Future Generations of Red Blood Cell Substitutes. Journal of Internal Medicine, 253, 527-535. https://doi.org/10.1046/j.1365-2796.2003.01151.x |
[23] |
Alayash, A.I. (2004) Oxygen Therapeutics: Can We Tame Haemoglobin. Nature Reviews Drug Discovery, 3, 152-159. https://doi.org/10.1038/nrd1307 |
[24] |
D’Agnillo, F. and Chang, T.M.S. (1998) Polyhemoglobin-Superoxide Dismutase-Catalase as a Blood Substitute with Antioxidant Properties. Nature Biotechnology, 16, 667-671. https://doi.org/10.1038/nbt0798-667 |
[25] |
Powanda, D. and Chang, T.M.S. (2002) Cross-Linked Poly Hb superoxide Dismutase-Catalase Supplies Oxygen without Causing Blood Brain Barrier Disruption or Brain Edema in a Rat Model of Transient Global Brain Ischemia-Reperfusion. Artificial Cells, Blood Substitutes, and Biotechnology, 30, 25-42. https://doi.org/10.1081/BIO-120002725 |
[26] |
Chang, T.M.S. (2004) Artificial Cell Bioencapsulation in Macro, Micro, Nano, and Molecular Dimensions: Keynote Lecture. Artificial Cells, Blood Substitutes, and Biotechnology, 32, 1-23. https://doi.org/10.1081/BIO-120028665 |
[27] |
Abuchowski, A. (2016) PEGylated Bovine Carboxyhemoglobin (Sanguinate): Results of Clinical Safety Testing and Use in Patients. In: Elwell, C.E., Leung, T.S., Harrison, D.K., Eds., Oxygen Transport to Tissue XXXVII. Advances in Experimental Medicine and Biology, Springer, New York. https://doi.org/10.1007/978-1-4939-3023-4_58 |
[28] |
Buehler, P.W., Mehendale, S. and Wang, H. (2000) Resuscitative Effects of Polynitroxylated Alphaalpha-Cross-Linked Hemoglobin Following Severe Hemorrhage in the Rat. Free Radical Biology and Medicine, 29, 764-774. https://doi.org/10.1016/S0891-5849(00)00383-X |
[29] |
Cabrales, P. (2013) Examining and Mitigating Acellular Hemoglobin Vasoactivity. Antioxidants & Redox Signaling, 18, 2329-2341. https://doi.org/10.1089/ars.2012.4922 |
[30] |
Pearce, L.B. (2006) HBOC-201 (Hb Glutamer-250 (Bovine), Hemopure): Clinical Studies, In: Winslow, R.M., Ed., Blood Substitutes, Academic Press, Cambridge, 437-450. https://doi.org/10.1016/B978-012759760-7/50047-0 |
[31] |
Yu, B.L., Swi, C. and Ming, T. (2004) In Vitro and in Vivo Effects of Polyhaemoglobin-Tyrosinase on Murine B16F10 melanoma. Melanoma Research, 14, 197-202. https://doi.org/10.1097/01.cmr.0000131013.71638.c0 |
[32] |
Yu, B.L. and Chang, T.M.S. (2004) Effects of Combined Oral Administration and Intravenous Injection on Maintaining Decreased Systemic Tyrosine Levels in Rats. Artificial Cells, Blood Substitutes, and Biotechnology, 32, 129-148. https://doi.org/10.1081/BIO-120028673 |
[33] |
Djordjevich, L. and Miller, I.F. (1980) Synthetic Erythrocytes from Lipid Encapsulated Hemoglobin. Experimental Hematology, 8, 584-592. |
[34] |
Phillips, W.T., Klipper, R.W., Awasthi, V.D., et al. (1999) Polyethylene Glycol-Modified Liposome-Encapsulated Hemoglobin: a Long Circulating Red Cell Substitute. Journal of Pharmacology and Experimental Therapeutics, 288, 665-670. |
[35] |
Simoni, J. (2005) Endothelial Cell Response to Hemoglobin Based Oxygen Carriers. Is the Attenuation of Pathological Reactions Possible. Keio Journal of Medicine, 52, 30-31. |
[36] |
Tsuchida, E., Komatsu, T. and Yanagimoto, T. (2010) Preservation Stability and in Vivo Administration of Albumin-Heme Hybrid Solution as an Entirely Synthetic O2-Carrier. Polymers for Advanced Technologies, 13, 845-850. https://doi.org/10.1002/pat.240 |
[37] |
Yu, W.P. and Chang, T.M. (1996) Submicron Polymer Membrane Hemoglobin Nanocapsules as Potential Blood Substitutes: Preparation and Characterization. Artificial Cells, Blood Substitutes, and Biotechnology, 24, 169-183. https://doi.org/10.3109/10731199609117433 |
[38] |
Chang, T.M.S., Powanda, D. and Yu, W. P. (2003) Analysis of Polyethylene-Glycol-Polylactide Nano-Dimension Artificial Red Blood Cells in Maintaining Systemic Hemoglobin Levels and Prevention of Methemoglobin Formation. Artificial Cells, Blood Substitutes, and Biotechnology, 31, 231-248. https://doi.org/10.1081/BIO-120023155 |
[39] |
Xu, G. R., Wang, S. H., Zhao, H. L., Wu, S. B., Xu, J. M., Li, L. and Liu, X.Y. (2015) Layer-by-Layer (LBL) Assembly Technology as Promising Strategy for Tailoring Pressure-Driven Desalination Membranes. Journal of Membrane Science, 493, 428-443. https://doi.org/10.1016/j.memsci.2015.06.038 |
[40] |
Cuomo, F., Lopez, F. and Ceglie, A. (2014) Templated Globules—Applications and Perspectives. Advances in Colloid and Interface Science, 205, 124-133. https://doi.org/10.1016/j.cis.2013.08.003 |
[41] |
Xiong, Y., Liu, Z.Z., Georgieva, R., Smuda, K., Steffen, A., Sendeski, M., Voigt, A., Patzak, A. and Bäumler, H. (2013) Nonvasoconstrictive Hemoglobin Particles as Oxygen Carriers. ACS Publications, 7, 7454-7461. https://doi.org/10.1021/nn402073n |
[42] |
Wang, Y., Wang, L.L., Yu, W.L., Gao, D.W., You, G.X., Li, P.L., Zhang, S., Zhang, J., Hu, T., Zhao, L. and Zhou, H. (2017) A PEGylated Bovine Hemoglobin as a Potent Hemoglobin-Based Oxygen Carrier. Biotechnology Progress, 33, 252-260. https://doi.org/10.1002/btpr.2380 |
[43] |
Li, H., Jia, Y. and Feng, X. (2017) Facile Fabrication of Robust Polydopamine Microcapsules for Insulin Delivery. Journal of Colloid and Interface Science, 487, 12-19. https://doi.org/10.1016/j.jcis.2016.10.012 |
[44] |
Xiong, Y., Steffen, A., Andreas, K., Mueller, S., Sternberg, N., Georgieva, R. and Baeumler, H. (2012) Hemoglobin-Based Oxygen Carrier Microparticles: Synthesis, Properties, and in Vitro and in Vivo Investigations. Biomacromolecules, 13, 3292-3300. https://doi.org/10.1021/bm301085x |
[45] |
Rydzek, G., Ji, Q., Li, M., Schaaf, P., Hill, J.P., Boulmedais, F. and Ariga, K. (2015) Electrochemical Nanoarchitectonics and Layer-by-Layer Assembly: From Basics to Future. Nano Today, 10, 138-167. https://doi.org/10.1016/j.nantod.2015.02.008 |
[46] |
Szarpak, A., Cui, D. and Dubreuil, F. (2010) Designing Hyaluronic Acid-Based Layer-by-Layer Capsules as a Carrier for Intracellular Drug Delivery. Biomacromolecules, 11, 713-720. https://doi.org/10.1021/bm9012937 |
[47] |
Tong, W., Gao, C. and Möhwald, H. (2006) Single Polyelectrolyte Microcapsules Fabricated by Glutaraldehyde-Mediated Covalent Layer-by-Layer Assembly. Macromolecular Rapid Communications, 27, 2078-2083. https://doi.org/10.1002/marc.200600533 |
[48] |
Ma, Y., Dong, W.F. and Hempenius, M.A. (2006) Redox-Controlled Molecular Permeability of Composite-Wall Microcapsules. Nature Materials, 5, 724-729. https://doi.org/10.1038/nmat1716 |
[49] |
Kurapati, R. and Raichur, A.M. (2013) Near-Infrared Light-Responsive Graphene Oxide Composite Multilayer Capsules: A Novel Route for Remote Controlled Drug Delivery. Chemical Communications, 49, 734-736. https://doi.org/10.1039/C2CC38417E |
[50] |
She, S.P., Li, Q.Q., Shan, B.W., Tong, W.J. and Gao, C.Y. (2013) Fabrication of Red-Blood-Cell-Like Polyelectrolyte Microcapsules and Their Deformation and Recovery Behavior through a Microcapillary. Advanced Materials, 25, 5814-5818. https://doi.org/10.1002/adma.201302875 |
[51] |
Duan, L., Yan, X., Wang, A., Jia, Y. and Li, J. (2012) Highly Loaded Hemoglobin Spheres as Promising Artificial Oxygen Carriers. ACS Nano, 6, 6897-6904. https://doi.org/10.1021/nn301735u |
[52] |
Jia, Y., Cui, Y., Fei, J.B., Du, M.C., Dai, L.L., Li, J.B. and Yang, Y. (2012) Construction and Evaluation of Hemoglobin-Based Capsules as Blood Substitutes. Advanced Functional Materials, 22, 1446-1453. https://doi.org/10.1002/adfm.201102737.. |