[1] |
Chen, S., Takata, T. and Domen, K. (2017) Particulate Photocatalysts for Overall Water Splitting. Nature Reviews. Mate-rials, 2, Article No. 17050. https://doi.org/10.1038/natrevmats.2017.50 |
[2] |
Hisatomi, T., Kubota, J. and Domen, K. (2014) Recent Advances in Semiconductors for Photocatalytic and Photoelectrochemical Water Splitting. Chemical Society Reviews, 43, 7520-7535. https://doi.org/10.1039/C3CS60378D |
[3] |
Moniz, S.J.A., Shevlin, S.A., Martin, D.J., Guo, Z.-X. and Tang, J. (2015) Visible-Light Driven Heterojunction Photocatalysts for Water Splitting—A Critical Review. Energy & Environmental Science, 8, 731-759. https://doi.org/10.1039/C4EE03271C |
[4] |
Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Wa-ter at a Semiconductor Electrode. Nature, 238, 37-38. https://doi.org/10.1038/238037a0 |
[5] |
Wang, X., Meada, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J.M., et al. (2009) A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light. Nature Materials, 8, 76-80. https://doi.org/10.1038/nmat2317 |
[6] |
Fu, J., Yu, J., Jiang, C. and Cheng, B. (2018) g-C3N4-Based Heterostructured Photocatalysts. Advanced Energy Materials, 8, Article ID: 1701503. https://doi.org/10.1002/aenm.201701503 |
[7] |
Baetens, R., Jelle, B.P. and Gustavsen, A. (2011) Aerogel Insulation for Building Applications: A State-of-the-Art Review Energy and Buildings. Energy and Buildings, 43, 761-769. https://doi.org/10.1016/j.enbuild.2010.12.012 |
[8] |
Ahmed, E.M. (2015) Hydrogel: Preparation, Characterization, and Applications: A Review. Journal of Advanced Research, 6, 105-121. https://doi.org/10.1016/j.jare.2013.07.006 |
[9] |
Carine, L., Chrystelle, E. and Géard, F. (2001) Hydrothermal ver-sus Nonhydrothermal Synthesis for the Preparation of Organic-Inorganic Solids: The Example of Cobalt(II) Succinate. Chemistry of Materials, 13, 410-414. https://doi.org/10.1021/cm001148k |
[10] |
Kanamori, K., Kodera, Y., Hqyase, G., Nakanishi, K. and Hanada, T. (2011) Transition from Transparent Aerogels to Hierarchically Porous Monoliths in Polymethylsilsesquioxane Sol-Gel System. Journal of Colloid and Interface Science, 357, 336-344. https://doi.org/10.1016/j.jcis.2011.02.027 |
[11] |
Li, Y., Zhang, X.N. and Liu, D. (2021) Recent Developments of Perylene diimide (PDI) Supramolecular Photocatalysts: A Review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 48, Article ID: 1004636. |
[12] |
Zhu, Z.D., Pan, H.H., Murugananthan, M., Gong, J. and Zhang, Y. (2018) Visible Light-Driven Photocatalytically Active g-C3N4 Material for Enhanced Generation of H2O2. Applied Catalysis B: Environmental, 232, 19-25. https://doi.org/10.1016/j.apcatb.2018.03.035 |
[13] |
Grainger, R., Heightman, T.D., Ley, S.V., Lima, F. and Johnson, C.N. (2019) Enabling Synthesis in Fragment-Based Drug Discovery by Reactivity Mapping: Photoredox-Mediated Cross-Dehydrogenative Heteroarylation of Cyclic Amines. Chemical Science, 10, 2264-2271. https://doi.org/10.1039/C8SC04789H |
[14] |
Vongehr, S. (2017) Comment on “Flexible Asymmetric Supercapaci-tors Based on Nitrogen-Doped Graphene Hydrogels with Embedded Nickel Hydroxide Nanoplates”. ChemSusChem, 10, 2309-2311. https://doi.org/10.1002/cssc.201700330 |
[15] |
Chowdhury, S., Jiang, Y.Q., Muthukaruppan, S. and Balasubrama-nian, R. (2018) Effect of Boron Doping Level on the Photocatalytic Activity of Graphene Aerogels. Carbon, 128, 237-248. https://doi.org/10.1016/j.carbon.2017.11.089 |
[16] |
Wang, Y., Xiang, Y.N., Pan, W., Wang, H., Li, N. and Tang, B. (2020) Dual-Targeted Photothermal Agents for Enhanced Cancer Therapy. Chemical Science, 11, 8055-8072. https://doi.org/10.1039/D0SC03173A |
[17] |
Liang, Y.H., Wang, X., An, W.J., Li, Y., Hu, J. and Cui, W. (2019) Ag-C3N4@ppy-rGO 3D Structure Hydrogel for Efficient Photocatalysis. Applied Surface Science, 466, 666-672. https://doi.org/10.1016/j.apsusc.2018.10.059 |
[18] |
Xu, C., Kong, X.Y., Zhou, S.Y., Zheng, B., Huo, F. and Strømme, M. (2018) Interweaving Metal-Organic Framework-Templated Co–Ni Layered Double Hydroxide Nanocages with Nanocellulose and Carbon Nanotubes to Make Flexible and Foldable Electrodes for Energy Storage De-vices. Journal of Materials Chemistry A, 6, 24050-24057. https://doi.org/10.1039/C8TA10133G |
[19] |
Wu, X.Y., Li, S.M., Wang, B., Liu, J. and Yu, M. (2017) From Biomass Chitin to Mesoporous Nanosheets Assembled Loofa Sponge-Like N-Doped Carbon/g-C3N4 3D Network Architectures as Ultralow-Cost Bifunctional Oxygen Catalysts. Microporous and Mesoporous Materials, 240, 216-226. https://doi.org/10.1016/j.micromeso.2016.11.022 |
[20] |
Mie, Y., Katagai, S. and Ikegami, M. (2020) Electrochemi-cal Oxidation of Monosaccharides at Nanoporous Gold with Controlled Atomic Surface Orientation and Non-Enzymatic Galactose Sensing. Sensors, 20, Article No. 5632. https://doi.org/10.3390/s20195632 |
[21] |
Mo, Z., Xu, H., Chen, Z.G., She, X., Song, Y., Wu, J., et al. (2018) Self-Assembled Synthesis of Defect-Engineered Graphitic Carbon Nitride Nanotubes for Efficient Conversion of Solar Energy. Applied Catalysis B: Environmental, 225, 154-161. https://doi.org/10.1016/j.apcatb.2017.11.041 |
[22] |
Sun, C.X., Ji, S.B., Li, F. and Xu, H. (2017) Diselenide-Containing Hyperbranched Polymer with Light-Induced Cytotoxicity. ACS Applied Materials & Interfaces, 9, 12924-12929. https://doi.org/10.1021/acsami.7b02367 |
[23] |
Ming, L.F., Sun, N., Xu, L.M. and Chen, F. (2018) Fluoride Ion-Promoted Hydrothermal Synthesis of Oxygenated g-C3N4 with High Photocatalytic Activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 549, 67-75. https://doi.org/10.1016/j.colsurfa.2018.04.013 |
[24] |
Cao, Q. and Kumru, B. (2020) Polymeric Carbon Nitride Ar-mored Centimeter-Wide Organic Droplets in Water for All-Liquid Heterophase Emission Technology. Polymers, 12, Ar-ticle No. 1626. https://doi.org/10.3390/polym12081626 |
[25] |
Sun, H.J., Öner, I.H., Wang, T., Zhang, T., Selyshchev, O., Neu-mann, C., et al. (2019) Molecular Engineering of Conjugated Acetylenic Polymers for Efficient Cocatalyst-free Photoe-lectrochemical Water Reduction. Angewandte Chemie International Edition, 58, 10368-10374. https://doi.org/10.1002/anie.201904978 |
[26] |
Kang, Y., Sun, W., Fan, J.L., Wei, Z., Wang, S., Li, M., et al. (2018) Ratiometric Real-Time Monitoring of Hydroxyapatite-Doxorubicin Nanotheranostic Agents for On-Demand Tumor Tar-geted Chemotherapy. Materials Chemistry Frontiers, 2, 1791-1798. https://doi.org/10.1039/C8QM00215K |
[27] |
Wan, X., Liu, X.F., Li, Y.C., Yu, R., Zheng, L., Yan, W., et al. (2019) Fe-N-C Electrocatalyst with Dense Active Sites and Efficient Mass Transport for High-Performance Proton Exchange Membrane Fuel Cells. Nature Catalysis, 2, 259-268. https://doi.org/10.1038/s41929-019-0237-3 |
[28] |
Ni, T.J., Li, Q.S., Yan, Y.H., Yang, Z., Chang, K. and Liu, G. (2021) N,Cu-CD-Decorated Mesoporous WO3 for Enhanced Photocatalysis Under UV-Vis-NIR Light Irradiation. Frontiers in Materials, 8, Article No. 649411. https://doi.org/10.3389/fmats.2021.649411 |
[29] |
Inoue, T., Fujishima, A., Konishi, S. and Honda, K. (1979) Pho-toelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders. Nature, 277, 637-638. https://doi.org/10.1038/277637a0 |
[30] |
Shang, Y.H., Gong, Q., Zheng, M., Zhang, H. and Zhou, X. (2019) An Efficient Morpholinium Ionic Liquid Based Catalyst System for Cycloaddition of CO2 and Epoxides under Mild Conditions. Journal of Molecular Liquids, 283, 235-241. https://doi.org/10.1016/j.molliq.2019.03.089 |
[31] |
Alcudia-Ramos, M.A., Fuentez-Torres, M.O., Ortiz-Chi, F., Espinosa-González, C.G., Hernández-Como, N., García-Zaleta, D.S., et al. (2020) Fabrication of g-C3N4/TiO2 Heterojunction Composite for Enhanced Photocatalytic Hydrogen Production. Ceramics International, 46, 38-45. https://doi.org/10.1016/j.ceramint.2019.08.228 |
[32] |
Li, H.L., Gao, Y., Xiong, Z., Liao, C. and Shih, K. (2018) Enhanced Selective Photocatalytic Reduction of CO2 to CH4 over Plasmonic Au Modified g-C3N4 Photocatalyst under UV-Vis Light Irradiation. Applied Surface Science, 439, 552-559. https://doi.org/10.1016/j.apsusc.2018.01.071 |
[33] |
Niu, P., Yang, Y., Yu, J.C., Liu, G. and Cheng, H.-M. (2014) Switching the Selectivity of the Photoreduction Reaction of Carbon Dioxide by Controlling the Band Structure of a g-C3N4 Photocatalyst. Chemical Communications, 50, 10837-10840. https://doi.org/10.1039/C4CC03060E |
[34] |
Raziq, F., Qu, Y., Humayun, M., Zada, A., Yu, H. and Jing, L. (2017) Synthesis of SnO2/B-P Codoped g-C3N4 Nanocomposites as Efficient Cocatalyst-Free Visible-Light Photocatalysts for CO2 Conversion and Pollutant Degradation. Applied Catalysis B: Environmental, 201, 486-494. https://doi.org/10.1016/j.apcatb.2016.08.057 |
[35] |
Xu, Y., Zhang, J.J., Zhu, B.C., Jing, L. and Xu, J. (2018) CuInS2 Sensitized TiO2 Hybrid Nanofibers for Improved Photocatalytic CO2 Reduction. Applied Catalysis B: Environmental, 230, 194-202. https://doi.org/10.1016/j.apcatb.2018.02.042 |
[36] |
He, Y., Zhang, L., Teng, B. and Fan, M. (2015) New Application of Z-Scheme Ag3PO4/g-C3N4 Composite in Converting CO2 to Fuel. Environmental Science & Technology, 49, 649-656. https://doi.org/10.1021/es5046309 |
[37] |
Yao, J., Wu, G.D., Liu, F., Wang, S., Hu, Y., Zhang, J., et al. (2016) Enhanced Photo-Fenton-Like Process over Z-Scheme CoFe2O4/g-C3N4 Heterostructures under Natural Indoor Light. Environmental Science and Pollution Research, 23, 21833-21845. https://doi.org/10.1007/s11356-016-7329-2 |
[38] |
Sun, K.Y., Kou, Y., Dong, H.S., Ye, S., Zhao, D., Liu, J., et al. (2021) The Design of Phase Change Materials with Carbon Aerogel Composites for Multi-Responsive Thermal Energy Capture and Storage. Journal of Materials Chemistry A, 9, 1213-1220. https://doi.org/10.1039/D0TA09035B |