[1] |
Banerjee, S, Mason, P.D., Ertel, K., et al. (2016) 100J-Level Nanosecond Pulsed Diode Pumped Solid State Laser. Optics Letters, 41, 2089-2092. https://doi.org/10.1364/OL.41.002089 |
[2] |
苏艳丽. LD泵浦全固态213 nm深紫外激光器的研究[D]: [硕士学位论文]. 济南: 山东师范大学, 2006. |
[3] |
Xu, Z.Y., Zhang, S.J., Zhou, X.J., et al. (2019) Advances in Deep Ultraviolet Laser Based High-Resolution Photo Emission Spectroscopy. Frontiers of Information Technology & Electronic Engineering, 20, 885-913. https://doi.org/10.1631/FITEE.1800744 |
[4] |
冯哲川, 田明, 张乃霁, 等. 宽禁带半导体的深紫外拉曼光谱学研究[C]//中国物理学会光散射专业委员会. 第二十届全国光散射学术会议(CNCLS 20)论文摘要集. 2019. |
[5] |
许祖彦. 探索深紫外的神秘世界[J]. 紫光阁, 2016, 33(01): 83-84. |
[6] |
Lu, H., Xu, H., Zhao, J., et al. (2020) A Deep Ultraviolet Mode-Locked Laser Based on a Neural Network. Scientific Reports, 10, Article No. 116. https://doi.org/10.1038/s41598-019-56845-6 |
[7] |
郑俊娟, 秘国江, 王旭, 等. 193 nm深紫外固体激光技术探索[J]. 激光与红外, 2010, 40(10): 1068-1070. |
[8] |
Niemi, K., der Gathen, V.S. and Döbele, H.F. (2001) Absolute Calibration of Atomic Density Measurements by Laser-Induced Fluorescence Spectroscopy with Two-Photon Excitation. Journal of Physics D: Applied Physics, 34, 2330-2335. https://doi.org/10.1088/0022-3727/34/15/312 |
[9] |
Wysong, I.J., Jeffries, J.B., Crosley, D.R., et al. (1989) Laser-Induced Fluorescence of O, O2, and NO near 226 nm: Photolytic Interferences and Simultaneous Excitation in Flames. Optics Letters, 14, 767-769. https://doi.org/10.1364/OL.14.000767 |
[10] |
Mason, P., Divoky, M., Butcher, T., et al. (2017) Commissioning of a kW-Class Nanosecond Pulsed DPSSL Operating at 105 J, 10 Hz. High-Power, High-Energy, & High-Intensity Laser Technology III, Prague, 11 May 2017, 102380H. https://doi.org/10.1117/12.2270399 |
[11] |
Dai, S.B., Zong, N., Yang, F., et al. (2015) 167.75-nm Vacuum-Ultraviolet ps Laser by Eighth-Harmonic Generation of a 1342-nm Nd: YVO4 Amplifier in KBBF. Optics Letters, 40, 3268-3271. https://doi.org/10.1364/OL.40.003268 |
[12] |
Dai, S.B., Ming, C., Zhang, S.J., et al. (2016) 2.14 mW Deep-Ultraviolet Laser at 165 nm by Eighth-Harmonic Generation of a 1319 nm Nd:YAG Laser in KBBF. Laser Physics Letters, 13, Article ID: 035401. https://doi.org/10.1088/1612-2011/13/3/035401 |
[13] |
刘旭超, 成洪玲, 王志敏, 彭钦军, 许祖彦. 光学端面泵浦碱金属铷蒸汽激光器获得693 W峰值功率输出(英文) [J]. 红外与激光工程, 2020, 49(S1): 12-18. |
[14] |
Li, J.J., Zhang, F.F., Wang, Z.M., et al. (2018) High-Energy Single-Frequency 167 nm Deep-Ultraviolet Laser. Optics Letters, 43, 2563-2566. https://doi.org/10.1364/OL.43.002563 |
[15] |
Yang, F., Wang, Z., Zhou, Y., et al. (2009) Theoretical and Experimental Investigations of Nanosecond 177.3 nm Deep-Ultraviolet Light by Second Harmonic Generation in KBBF. Applied Physics B, 96, 415-422. https://doi.org/10.1007/s00340-009-3506-z |
[16] |
Scholz, M., Opalevs, D., Leisching, P., et al. (2012) 1.3-mW Tunable and Narrow-Band Continuous-Wave Light Source at 191 nm. Optics Express, 20, 18659-18664. https://doi.org/10.1364/OE.20.018659 |
[17] |
Scholz, M., Opalevs, D., Leisching, P., et al. (2013) A Bright Conti-nuous-Wave Laser Source at 193 nm. Applied Physics Letters, 103, Article ID: 051114. https://doi.org/10.1063/1.4817786 |
[18] |
Eismann, U., Scholz, M., Paasch-Colberg, T., et al. (2016) Short, Shorter, Shortest: Diode Lasers in the Deep Ultraviolet. Laser Focus World, 52, 39-44. |
[19] |
Chen, C.T., Wang, Y.B., You, N., et al. (1995) New Development of Nonlinear Optical Crystals for the Ultraviolet Region with Molecular Engineering Approach. Journal of Applied Physics, 77, 2268-2272. https://doi.org/10.1063/1.358814 |
[20] |
Tang, D., Xia, Y., Wu, B., et al. (2001) Growth of a New UV Nonlinear Optical Crystal: Kbe2(BO3)F2. Journal of Crystal Growth, 222, 125-129. https://doi.org/10.1016/S0022-0248(00)00850-2 |
[21] |
Kanai, T., Wang, X., Adachi, S., et al. (2009) Watt-Level Tunable Deep Ultraviolet Light Source by a KBBF Prism- Coupled Device. Optics Express, 17, 8696-8703. https://doi.org/10.1364/OE.17.008696 |
[22] |
Opalevs, D., Scholz, M., Gilfert, C., et al. (2018) Semiconductor-Based Narrow-Line and High-Brilliance 193-nm Laser System for Industrial Applications. Solid State Lasers XXVII: Technology & Devices, San Francisco, 15 February 2018, 105112C. https://doi.org/10.1117/12.2290288 |
[23] |
Xuan, H.W., Zhao, Z.G., Hironori, I., et al. (2015) 300-mW Narrow-Linewidth Deep-Ultraviolet Light Generation at 193 nm by Frequency Mixing between Yb-Hybrid and Er-Fiber Lasers. Optics Express, 23, 10564-10572. https://doi.org/10.1364/OE.23.010564 |
[24] |
Xuan, H., Chen, Q., Zhao, Z., et al. (2017) 1 W Solid-State 193 nm Coherent Light by Sum-Frequency Generation. Optics Express, 25, 29172-29179. https://doi.org/10.1364/OE.25.029172 |
[25] |
Xuan, H., Qu, C., Ito, S., et al. (2017) High Power, and High Conversion Efficiency Deep Ultraviolet (DUV) Laser at 258 nm Generation in the CsLiB6O10 (CLBO) Crystal with a Beam Quality of M2<1.5. Optics Letters, 42, 3133-3136. https://doi.org/10.1364/OL.42.003133 |
[26] |
Zhao, Z., Xuan, H., Igarashi, H., et al. (2015) Single Frequency, 5 ns, 200 µJ, 1553 nm Fiber Laser Using Silica Based Er-Doped Fiber. Optics Express, 23, 29764-29771. https://doi.org/10.1364/OE.23.029764 |
[27] |
Xuan, H., Zhao, Z., Igarashi, H., et al. (2014) Development of Nar-row-Linewidth Yb- and Er-Fiber Lasers and Frequency Mixing for ArF Excimer Laser Seeding. Fiber Lasers XI: Technology, Systems, and Applications, San Francisco, 12 March 2014, 89612M. https://doi.org/10.1117/12.2038318 |
[28] |
Zhao, Z., Qu, C., Hironori, I., et al. (2018) Watt-Level 193 nm Source Generation Based on Compact Collinear Cascaded Sum Frequency Mixing Configuration. Optics Express, 26, 19435-19444. https://doi.org/10.1364/OE.26.019435 |
[29] |
Bykov, S.V., Mao, M., Gares, K.L., et al. (2015) Compact Solid-State 213 nm Laser Enables Standoff Deep Ultraviolet Raman Spectrometer: Measurements of Nitrate Photochemistry. Applied Spectroscopy, 69, 895-901. https://doi.org/10.1366/15-07960 |
[30] |
Chu, Y., Zhang, X., Chen, B., et al. (2021) Picosecond High-Power 213-nm Deep-Ultraviolet Laser Generation Using β-BaB2O4 Crystal. Optics & Laser Technology, 134, Article ID: 106657. https://doi.org/10.1016/j.optlastec.2020.106657 |
[31] |
苏鑫, 姚吉, 王禹凝, 等. 皮秒光纤-固体混合放大紫外激光器[J]. 光学精密工程, 2020, 28(10): 2122-2128. |
[32] |
窦微, 浦双双, 牛娜, 等. 双波长二极管合束端面抽运掺镨氟化钇锂单纵模360 nm紫外激光器[J]. 物理学报, 2019, 68(5): 125-133. |
[33] |
李斌, 孙冰, 苗银萍. 锁波长914 nm半导体激光器共振抽运Nd:YVO4/LBO声光调Q绿光激光器[J]. 中国激光, 2019, 46(10): 54-58. |
[34] |
张昕, 杨军, 吴国锋, 鞠涛, 李沼云. LD泵浦全固态紫外激光器[J]. 光通信技术, 2011, 35(7): 7-10. |
[35] |
孔庆鑫, 任怀瑾, 鲁燕华, 王卫民. 全固态紫外激光器研究进展[J]. 光通信技术, 2017, 41(5): 34-37. |
[36] |
罗塞雨. Pr:YLF和Pr,Gd:CaF_2激光特性研究[D]:[博士学位论文]. 厦门: 厦门大学, 2017. |
[37] |
Luo, S., Cai, Z., Sheng, C., et al. (2020) 604-nm High-Order Vortex Beams Directly Generated from a Pr:YLF Laser with a Cavity-Loss-Induced Gain Switching Mechanism. Optics & Laser Technology, 127, Article ID: 106185. https://doi.org/10.1016/j.optlastec.2020.106185 |
[38] |
赵智刚, 关晨, 丛振华, 等. 翠绿宝石固体激光器研究进展(特邀) [J]. 光子学报, 2020, 49(11): 77-105. |
[39] |
陈晴, 浦双双, 牛娜, 等. 双波长蓝光LD抽运Pr:YLF晶体倍频261 nm 激光器[J]. 红外与激光程, 2020, 49(S1): 7-11. |
[40] |
Li, Y.J., Zong, N., Dai, S.B., et al. (2019) Experimental and Theoretical Investigations on High Power Vacuum-Ultra- violet Laser at 165 nm by Eighth-Harmonic Generation in KBBF. Optics & Laser Technology, 120, Article ID: 105756. https://doi.org/10.1016/j.optlastec.2019.105756 |