[1] |
Wang, C.Y., Zhang, Y.J., Wang, W.K., Pei, D.N., Huang, G.X., Chen, J.J., et al. (2018) Enhanced Photocatalytic Degradation of Bisphenol A by Co-Doped BiOCl Nanosheets under Visible Light Irradiation. Applied Catalysis B: Environmental, 221, 320-328. https://doi.org/10.1016/j.apcatb.2017.09.036 |
[2] |
Moreira, N.F.F., Orge, C.A., Ribeiro, A.R., Faria, J.L., Nunes, O.C., Pereira, M.F.R., et al. (2015) Fast Mineralization and Detoxification of Amoxicillin and Diclofenac by Photocatalytic Ozonation and Application to An Urban Wastewater. Water Research, 87, 87-96. https://doi.org/10.1016/j.watres.2015.08.059 |
[3] |
Mai Lien, T., Fu, C.C. and Juang, R.S. (2019) Removal of Metronidazole and Amoxicillin Mixtures by UV/TiO2 Photocatalysis: An Insight into Degradation Pathways and Performance Improvement. Environmental Science and Pollution Research, 26, 11846-11855. https://doi.org/10.1007/s11356-019-04683-4 |
[4] |
Zhitkovich, A. (2011) Chromium in Drinking Water: Sources, Metabolism, and Cancer Risks. Chemical Research in Toxicology, 24, 1617-1629. https://doi.org/10.1021/tx200251t |
[5] |
Li, H.J., Tu, W.G., Zhou, Y. and Zou, Z.G. (2016) Z-Scheme Photocatalytic Systems for Promoting Photocatalytic Performance: Recent Progress and Future Challenges. Advanced Science, 3, Article ID: 1500389. https://doi.org/10.1002/advs.201500389 |
[6] |
Yang, Q., Ma, Y.H., Chen, F., Yao, F.B., Sun, J., Wang, S.N., et al. (2019) Recent Advances in Photo-Activated Sulfate Radical-Advanced Oxidation Process (SR-AOP) for Refractory Organic Pollutants Removal in Water. Chemical Engineering Journal, 378, Article ID: 122149. https://doi.org/10.1016/j.cej.2019.122149 |
[7] |
Wan, Z., Sun, Y., Tsang, D.C.W., Hou, D., Cao, X., Zhang, S., et al. (2020) Sustainable Remediation with An Electroactive Biochar System: Mechanisms and Perspectives. Green Chemistry, 22, 2688-2711. https://doi.org/10.1039/D0GC00717J |
[8] |
Wang, Y.B., Zhao, X., Cao, D., Wang, Y. and Zhu, Y.F. (2017) Peroxymonosulfate Enhanced Visible Light Photocatalytic Degradation Bisphenol A by Single-Atom Dispersed Ag Mesoporous g-C3N4 Hybrid. Applied Catalysis B: Environmental, 211, 79-88. https://doi.org/10.1016/j.apcatb.2017.03.079 |
[9] |
Yu, H.B., Jiang, L.B., Wang, H., Huang, B.B., Yuan, X.Z., Huang, J.H., et al. (2019) Modulation of Bi2MoO6-Based Materials for Photocatalytic Water Splitting and Environmental Application: A Critical Review. Small, 15, Article ID: 1901008. https://doi.org/10.1002/smll.201901008 |
[10] |
Shen, Z., Zhou, H.Y., Pan, Z.C., Guo, Y., Yuan, Y., Yao, G., et al. (2020) Degradation of Atrazine by Bi2MoO6 Activated Peroxymonosulfate under Visible Light Irradiation. Journal of Hazardous Materials, 400, Article ID: 123187. https://doi.org/10.1016/j.jhazmat.2020.123187 |
[11] |
Di, J., Zhao, X.X., Lian, C., Ji, M.X., Xia, J.X., Xiong, J., et al. (2019) Atomically-Thin Bi2MoO6 Nanosheets with Vacancy Pairs for Improved Photocatalytic CO2 Reduction. Nano Energy, 61, 54-59. https://doi.org/10.1016/j.nanoen.2019.04.029 |
[12] |
Tian, F., Li, G.F., Zhao, H.P., Chen, F.X., Li, M., Liu, Y.L., et al. (2019) Residual Fe Enhances the Activity of BiOCl Hierarchical Nanostructure for Hydrogen Peroxide Activation. Journal of Catalysis, 370, 265-273. https://doi.org/10.1016/j.jcat.2018.12.023 |
[13] |
Dai, Z., Qin, F., Zhao, H.P., Ding, J., Liu, Y.L. and Chen, R. (2016) Crystal Defect Engineering of Aurivillius Bi2MoO6 by Ce Doping for Increased Reactive Species Production in Photocatalysis. ACS Catalysis, 6, 3180-3192. https://doi.org/10.1021/acscatal.6b00490 |
[14] |
Dutta, D.P., Ballal, A., Chopade, S. and Kumar, A. (2017) A Study on the Effect of Transition Metal (Ti4+, Mn2+, Cu2+ and Zn2+)-Doping on Visible Light Photocatalytic Activity of Bi2MoO6 Nanorods. Journal of Photochemistry and Photobiology A: Chemistry, 346, 105-112. https://doi.org/10.1016/j.jphotochem.2017.05.044 |
[15] |
Meng, Q.Q., Lv, C.D., Sun, J.X., Hong, W.Z., Xing, W.N., Qiang, L.S., et al. (2019) High-Efficiency Fe-Mediated Bi2MoO6 Nitrogen-Fixing Photocatalyst: Reduced Surface Work Function and Ameliorated Surface Reaction. Applied Catalysis B: Environmental, 256, Article ID: 117781. https://doi.org/10.1016/j.apcatb.2019.117781 |
[16] |
Yang, Y.X., Kang, L. and Li, H. (2019) Enhancement of Photocatalytic Hydrogen Production of BiFeO3 by Gd3+ Doping. Ceramics International, 45, 8017-8022. https://doi.org/10.1016/j.ceramint.2018.12.150 |
[17] |
Ding, X., Ho, W.K., Shang, J. and Zhang, L.Z. (2016) Self Doping Promoted Photocatalytic Removal of NO under Visible Light with Bi2MoO6: Indispensable Role of Superoxide Ions. Applied Catalysis B: Environmental, 182, 316-325. https://doi.org/10.1016/j.apcatb.2015.09.046 |
[18] |
Tian, F., Chen, J., Chen, F.X., Liu, Y.L., Xu, Y.Q. and Chen, R. (2021) Boosting Hydrogen Evolution over Ni6(SCH2Ph)12 Nanocluster Modified TiO2 via Pseudo-Z-Scheme Interfacial Charge Transfer. Applied Catalysis B: Environmental, 292, Article ID: 120158. https://doi.org/10.1016/j.apcatb.2021.120158 |
[19] |
Li, J.T., Cushing, S.K., Zheng, P., Senty, T., Meng, F.K., Bristow, A.D., et al. (2014) Solar Hydrogen Generation by A CdS-Au-TiO2 Sandwich Nanorod Array Enhanced with Au Nanoparticle as Electron Relay and Plasmonic Photosensitizer. Journal of the American Chemical Society, 136, 8438-8449. https://doi.org/10.1021/ja503508g |
[20] |
Chen, Y., Yang, W.Y., Gao, S., Sun, C.X. and Li, Q. (2018) Synthesis of Bi2MoO6 Nanosheets with Rich Oxygen Vacancies by Postsynthesis Etching Treatment for Enhanced Photocatalytic Performance. ACS Applied Nano Materials, 1, 3565-3578. https://doi.org/10.1021/acsanm.8b00719 |
[21] |
Kong, X.Y., Lee, W.Q., Mohamed, A.R. and Chai, S.P. (2019) Effective Steering of Charge Flow through Synergistic Inducing Oxygen Vacancy Defects and p-n Heterojunctions in 2D/2D Surface-Engineered Bi2WO6/BiOI Cascade: Towards Superior Photocatalytic CO2 Reduction Activity. Chemical Engineering Journal, 372, 1183-1193. https://doi.org/10.1016/j.cej.2019.05.001 |
[22] |
Wang, Y.P., Liu, C., Zhang, Y.T., Meng, W.D., Yu, B., Pu, S.Y., et al. (2018) Sulfate Radical-Based Photo-Fenton Reaction Derived by CuBi2O4 and Its Composites with α-Bi2O3 under Visible Light Irradiation: Catalyst Fabrication, Performance and Reaction Mechanism. Applied Catalysis B: Environmental, 235, 264-273. https://doi.org/10.1016/j.apcatb.2018.04.058 |
[23] |
Zhang, J.L., Zhao, W., Li, Z., Lu, G. and Zhu, M.S. (2021) Visible-Light-Assisted Peroxymonosulfate Activation over Fe(II)/V(IV) Self-Doped FeVO4 Nanobelts with Enhanced Sulfamethoxazole Degradation: Performance and Mechanism. Chemical Engineering Journal, 403, Article ID: 126384. https://doi.org/10.1016/j.cej.2020.126384 |
[24] |
Liu, Y., Zhang, Y.L., Guo, H.G., Cheng, X., Liu, H.W. and Tang, W.H. (2017) Persulfate-Assisted Photodegradation of Diethylstilbestrol Using Monoclinic BiVO4 under Visible-Light Irradiation. Environmental Science and Pollution Research, 24, 3739-3747. https://doi.org/10.1007/s11356-016-8020-3 |
[25] |
Tang, H., Dai, Z., Xie, X.D., Wen, Z.P. and Chen, R. (2019) Promotion of Peroxydisulfate Activation over Cu0.84Bi2.08O4 for Visible Light Induced Photodegradation of Ciprofloxacin in Water Matrix. Chemical Engineering Journal, 356, 472-482. https://doi.org/10.1016/j.cej.2018.09.066 |