[1] |
吴元军, 申超, 谭青海, 张俊, 谭平恒, 郑厚植. 基于磁圆二向色谱的单层MoS2激子能量和线宽温度依赖特性[J]. 物理学报, 2018 , 67(14): 9. |
[2] |
Manzeli, S., Ovchinnikov, D., Pasquier, D., et al. (2017) 2D Transition Metal Dichalcogenides. Nature Reviews Materials, 2, 17033. https://doi.org/10.1038/natrevmats.2017.33 |
[3] |
Eftekhari, A. (2017) Molybdenum Diselenide (MoSe2) for Energy Storage, Catalysis, and Optoelectronics. Applied Materials To-day, 8, 1-17. https://doi.org/10.1016/j.apmt.2017.01.006 |
[4] |
Tan, C.L., Cao, X.H., Wu, X.J., et al. (2017) Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 117, 6225-6331. https://doi.org/10.1021/acs.chemrev.6b00558 |
[5] |
魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇. 高质量单层二硫化钼薄膜的研究进展[J]. 物理学报, 2018, 67(12): 263-295. |
[6] |
Wong, S.L., Liu, H.F. and Chi, D.Z. (2016) Recent Progress in Chemical Vapor Deposition Growth of Two-Dimensional Transition metal Dichalcogenides. Pro-gress in Crystal Growth and Characterization of Materials, 62, 9-28. https://doi.org/10.1016/j.pcrysgrow.2016.06.002 |
[7] |
Ovchinnikov, D., Allain, A., Huang, Y.S., Dumcenco, D. and Kis, A. (2014) Electrical Transport Properties of Single-Layer WS2. ACS Nano, 8, 8174-8181. https://doi.org/10.1021/nn502362b |
[8] |
Magnozzi, M., Ferrera, M., Piccinini, G., et al. (2020) Optical Dielectric Function of Two-Dimensional WS2 on Epitaxial Graphene. 2D Materials, 7, Article ID: 025024. https://doi.org/10.1088/2053-1583/ab6f0b |
[9] |
Manzeli, S., Ovchinnikov, D., Pasquier, D., et al. (2017) 2D Tran-sition Metal Dichalcogenides. Nature Reviews Materials, 2, 17033. https://doi.org/10.1038/natrevmats.2017.33 |
[10] |
Chhowalla, M., Liu, Z. and Zhang, H. (2015) Two-Dimensional Transition Metal Dichalcogenide (TMD) Nanosheets. Chemical Society Reviews, 44, 2584-2586. https://doi.org/10.1039/C5CS90037A |
[11] |
Zhou, H.L., Wang, C., Shaw, J.C., et al. (2015) Large Area Growth and Electrical Properties of p-Type WSe2 Atomic Layers. Nano Letters, 15, 709-713. https://doi.org/10.1021/nl504256y |
[12] |
Obeid, M.M., Stampfl, C., Bafekry, A., et al. (2020) First-Principles Inves-tigation of Nonmetal Doped Single-Layer BiOBr as a Potential Photocatalyst with a Low Recombination Rate. Physical Chemistry Chemical Physics, 22, 15354-15364. https://doi.org/10.1039/D0CP02007A |
[13] |
Al-Abbas, S.S.A., Muhsin, M.K. and Jappor, H.R. (2019) Two-Dimensional GaTe Monolayer as a Potential Gas Sensor for SO2 and NO2 with Discriminate Optical Properties. Superlattices and Microstructures, 135, Article ID: 106245. https://doi.org/10.1016/j.spmi.2019.106245 |
[14] |
Wang, H., Yu, L., Lee, Y.H., et al. (2012) Integrated Circuits Based on Bilayer MoS2 Transistors. Nano Letters, 12, 4674-4680. https://doi.org/10.1021/nl302015v |
[15] |
Radisavljevic, B., Whitwick, M.B. and Kis, A. (2011) Integrated Circuits and Logic Operations Based on Single-Layer MoS2. ACS Nano, 5, 9934-9938. https://doi.org/10.1021/nn203715c |
[16] |
Zhou, S.Y., Gweon, G.H., Fedorov, A.V., et al. (2007) Substrate-Induced Bandgap Opening in Epitaxial Graphene. Nature Materials, 6, 770-775. https://doi.org/10.1038/nmat2003 |
[17] |
Tao, L., Cinquanta, E., Chiappe, D., et al. (2015) Silicene Field-Effect Tran-sistors Operating at Room Temperature. Nature Nanotechnology, 10, 227-231. https://doi.org/10.1038/nnano.2014.325 |
[18] |
Derivaz, M., Dentel, D., Stephan, R., et al. (2015) Continuous Ger-manene Layer on A(111). Nano Letters, 15, 2510-2516. https://doi.org/10.1021/acs.nanolett.5b00085 |
[19] |
Zhang, Y., Ji, Q., Ju, J., et al. (2013) Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary. ACS Nano, 7, 8963-8971. https://doi.org/10.1021/nn403454e |
[20] |
Lin, Y.C., Zhang, W., Huang, J.K., et al. (2012) Wafer-Scale MoS2 Thin Layers Prepared by MoO3 Sulfurization. Nanoscale, 4, 6637-6641. https://doi.org/10.1039/c2nr31833d |
[21] |
Huang, J.K., Pu, J., Chuu, C.P., et al. (2014) Graphene Nanoelectron-ics—From Synthesis to Device Applications. ACS Nano, 8, 923-930. https://doi.org/10.1021/nn405719x |
[22] |
Najmaei, S., Liu, Z., Zhou, W., et al. (2013) Vapour Phase Growth and Grain Boundary Structure of Molybdenum Disulphide Atomic Layers. Nature Materials, 12, 754-759. https://doi.org/10.1038/nmat3673 |
[23] |
王鑫, 王文杰, 邓加军, 叶晨骁, 王雅雅, 车剑韬, 丁迅雷. 化学气相沉积法控制合成单层MoSe2薄膜[J]. 中国科技论文, 2018, 13(18): 2095-2783. |
[24] |
Shaw, J.C., Zhou, H., Chen, Y., et al. (2014) Chemical Vapor Deposition Growth of Monolayer MoSe2 Nanosheets. Nano Research, 7, 511-517. https://doi.org/10.1007/s12274-014-0417-z |
[25] |
Wang, X., Gong, Y., Shi, G., et al. (2014) Chemical Vapor Depo-sition Growth of Crystalline Monolayer MoSe2. ACS Nano, 8, 5125-5131. https://doi.org/10.1021/nn501175k |
[26] |
Li, Y., Wang, F., Tang, D.X., et al. (2018) Controlled Synthesis of Highly Crystalline CVD-Derived Monolayer MoSe2 and Shape Evolution Mechanism. Materials Letters, 216, 261-264. https://doi.org/10.1016/j.matlet.2018.01.102 |
[27] |
Fan, S., Yun, S.J., Yu, W.J., et al. (2020) Tailoring Quantum Tunneling in a Vanadium-Doped WSe2/SnSe2 Heterostructure. Advanced Science, 7, Article ID: 1902751. https://doi.org/10.1002/advs.201902751 |
[28] |
Larentis, S., Fallahazad, B. and Tutuc, E. (2012) Field-Effect Tran-sistors and Intrinsic Mobility in Ultra-Thin MoSe2 Layers. Applied Physics Letters, 101, Article ID: 223104. https://doi.org/10.1063/1.4768218 |
[29] |
Kim, M., Seo, J., Kim, J., et al. (2021) High-Crystalline Monolayer Transi-tion Metal Dichalcogenides Films for Wafer-Scale Electronics. ACS Nano, 15, 3038-3046. https://doi.org/10.1021/acsnano.0c09430 |
[30] |
Li, Y., Zhang, K.L., Wang, F., et al. (2017) Scalable Synthesis of Highly Crystalline MoSe2 and Its Ambipolar Behavior. ACS Applied Materials & Interfaces, 9, 36009-36016. https://doi.org/10.1021/acsami.7b10693 |