[1] |
Kumar, A., Raizada, P., Singh, P., Saini, R. and Hosseini-Bandegharaei, A. (2019) Perspective and Status of Polymeric Graphitic Carbonnitride Based Z-Schemephotocatalytic Systems for Sustainable Photocatalytic Water Purification. Chemical Engineering Journal, 391, Article ID: 123496. https://doi.org/10.1016/j.cej.2019.123496 |
[2] |
Habibi-Yangjeh, A., Asadzadeh-Khaneghah, S., Feizpoor, S. and Rouhi, A. (2020) Review on Heterogeneous Photocatalytic Disinfection of Waterborne, Airborne, and Foodborne Viruses: Can We Win against Pathogenic Viruses? Journal of Colloid and Interface Science, 580, 503-514. https://doi.org/10.1016/j.jcis.2020.07.047 |
[3] |
Huang, J.J., Hu, H.Y., Tang, F., Li, Y., Lu, S.Q. and Lu, Y. (2011) Inactivation and Reactivation of Antibiotic-Resistant Bacteria by Chlorination in Secondary Effluents of a Municipal Wastewater Treatment Plant. Water Research, 45, 2775-2781. https://doi.org/10.1016/j.watres.2011.02.026 |
[4] |
Haaken, D., et al. (2013) Limits of UV disinfection: UV/Electrolysis Hybrid Technology as a Promising Alternative for Direct Reuse of Biologically Treated Wastewater. Journal of Water Supply: Research and Technology-Aqua, 62, 442-451. https://doi.org/10.2166/aqua.2013.134 |
[5] |
Lu, X., Wang, Q. and Cui, D. (2010) Preparation and Photocatalytic Properties of g-C3N4/TiO2 Hybrid Composite. Journal of Materials Science & Technology, 26, 925-930. https://doi.org/10.1016/S1005-0302(10)60149-1 |
[6] |
Baur, E. and Rebmann, A. (1921) Ber Versuche zur Photo-lyse des Wassers. Helvetica Chimica Acta, 4, 256-262. https://doi.org/10.1002/hlca.19210040124 |
[7] |
Child, M., Koskinen, O., Linnanen, L. and Breyer, C. (2018) Sus-tainability Guardrails for Energy Scenarios of the Global Energy Transition. Renewable and Sustainable Energy Reviews, 91, 321-334. https://doi.org/10.1016/j.rser.2018.03.079 |
[8] |
杭梦婷, 成杨, 宋晓晴, 等. 石墨相氮化碳(g-C3N4)的制备及其在单原子电催化中的应用研究进展[J]. 化学世界, 60(4): 193-198. |
[9] |
马琳, 康晓雪, 胡绍争. Fe-P共掺杂石墨相氮化碳催化剂可见光下催化性能研究[J]. 分子催化, 2015, 29(4): 359-368. |
[10] |
Maeda, K., Wang, X., Nishihara, Y., et al. (2009) Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light. The Journal of Physical Chemistry C, 113, 4940-4947. https://doi.org/10.1021/jp809119m |
[11] |
Zambon, A., Mouesca, J.M., Gheorghiu, C.C., et al. (2018) s-Heptazine Oligomers: Promising Structural Models for Graphitic Carbon Nitride. Chemical Science, 7, 945-950. https://doi.org/10.1039/C5SC02992A |
[12] |
Zheng, Y., et al. (2015) Graphitic Carbon Nitride Polymers toward Sustainable Photoredox Catalysis. Angewandte Chemie, 54, 12868-12884. https://doi.org/10.1002/anie.201501788 |
[13] |
Schwarz, M., Horath-Bordon, E., Kroll, P., et al. (2002) Tri-s-triazine Derivatives. Part I. From Trichloro-tri-s-triazine to Graphitic C3N4 Structures. New Journal of Chemistry, 26, 508-512. https://doi.org/10.1039/b111062b |
[14] |
Molina, B. and Sansores, L. (1999) Eelectronic Structure of Six Phases of C3N4: A Theoretical Approach. Modern Physics Letters B, 13, 193-201. https://doi.org/10.1142/S0217984999000269 |
[15] |
Sano, T., et al. (2013) Activation of Graphitic Carbon Nitride (g-C3N4) by Alkaline Hydrothermal Treatment for Photocatalytic NO Oxidation in Gas Phase. Journal of Materials Chemistry A: Materials for Energy & Sustainability, 1, 6489-6496. https://doi.org/10.1039/c3ta10472a |
[16] |
Wang, X.C., et al. (2012) Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis. Acs Catalysis, 2, 1596-1606. https://doi.org/10.1021/cs300240x |
[17] |
Dong, G., Zhang, Y., Pan, Q., et al. (2014) A Fantastic Graphitic Carbon Nitride (g-C3N4) Material: Electronic Structure, Photocatalytic and Photoelectronic Properties. Journal of Photochemistry & Photobiology C Photochemistry Reviews, 20, 33-50. https://doi.org/10.1016/j.jphotochemrev.2014.04.002 |
[18] |
Shen, S.C., Ng, W.K., Letchmanan, K., et al. (2018) Graphene Nanosheets Encapsulated Poorly Soluble Drugs with an Enhanced Dissolution Rate. Carbon Letters, 27, 18-25. |
[19] |
Xiao, J.D., et al. (2018) Enhanced Hole-Dominated Photocatalytic Activity of Doughnut-Like Porous g-C3N4 Driven by Down-Shifted Valance Band Maximum. Catalysis Today, 307, 147-153. https://doi.org/10.1016/j.cattod.2017.02.024 |
[20] |
Yuan, Y.P., Yin, L.S., Cao, S.W., et al. (2014) Micro-wave-Assisted Heating Synthesis: A General and Rapid Strategy for Large-Scale Production of Highly Crystalline g-C3N4 with Enhanced Photocatalytic H2 Production. Green Chemistry, 16, 4663-4668. https://doi.org/10.1039/C4GC01517G |
[21] |
Kudernac, T., Lei, S., Elemans, J.A.A.W., et al. (2009) Two-Dimensional Supramolecular Self-Assembly: Nanoporous Networks on Surfaces. Chemical Society Reviews, 38, 402-421. https://doi.org/10.1039/B708902N |
[22] |
Sherrington, D.C. and Taskinen, K.A. (2001) Self-Assembly in Synthetic Macromolecular Systems via Multiple Hydrogen Bonding Interactions. Chemical Society Reviews, 30, 83-93. https://doi.org/10.1039/b008033k |
[23] |
Wang, X., Maeda, K., Chen, X., et al. (2009) Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light. Journal of the American Chemical Society, 131, 1680-1681. https://doi.org/10.1021/ja809307s |
[24] |
Liu, X., Giordano, C. and Antonietti, M. (2014) A Facile Molten-Salt Route to Graphene Synthesis. Small, 10, 193-200. https://doi.org/10.1002/smll.201300812 |
[25] |
Dupont, J., de Souza, R.F. and Suarez, P.A.Z. (2002) Ionic Liquid (Molten Salt) Phase Organometallic Catalysis. Chemical Reviews, 102, 3667-3692. https://doi.org/10.1021/cr010338r |
[26] |
Wang, Y., Zhang, J., Wang, X., et al. (2010) Boron- and Fluo-rine-Containing Mesoporous Carbon Nitride Polymers: Metal-Free Catalysts for Cyclohexane Oxidation. Angewandte Chemie International Edition, 49, 3356-3359. https://doi.org/10.1002/anie.201000120 |
[27] |
Liao, G.F., Gong, Y., Zhang, L., Gao, H.Y., Yang, G.-J. and Fang, B.Z. (2019) Semiconductor Polymeric Graphitic Carbon Nitride Photocatalysts: The “Holy Grail” for the Photocatalytic Hydrogen Evolution Reaction under Visible Light. Energy & Environmental Science, 12, 2080-2147. https://doi.org/10.1039/C9EE00717B |
[28] |
Ge, Z.T., Yu, A.C. and Lu, R. (2019) Preparation of Li-Doped Graphitic Carbon Nitride with Enhanced Visible-Light Photoactivity. Materials Letters, 250, 9-11. https://doi.org/10.1016/j.matlet.2019.04.099 |
[29] |
Song, P., Liang, S., Cui, J., et al. (2019) Purposefully Designing Novel Hydroxylated and Carbonylated Melamine towards the Synthesis of Targeted Porous Oxygen-Dopedg-C3N4 Nanosheets for Highly Enhanced Photocatalytic Hydrogen Production. Catalysis Science & Technology, 3, 597-605. https://doi.org/10.1039/C9CY01434A |
[30] |
Liu, J., Ding, G., Yu, J., et al. (2019) Hydrogen Peroxide-Assisted Synthesis of Oxygen-Doped Carbon Nitride Nanorods for Enhanced Photocatalytic Hydrogen Evolution. RSC Advances, 9, 28421-28431. https://doi.org/10.1039/C9RA04418C |
[31] |
Xiong, T., Cen, W., Zhang, Y., et al. (2016) Bridging the g-C3N4 Inter-layers for Enhanced Photocatalysis. ACS Catalysis, 6, 2462-2472. https://doi.org/10.1021/acscatal.5b02922 |
[32] |
池宪虎, 刘凤娇, 袁海滨, 关荣锋. 镍掺杂g-C3N4纳米片高效光催化制氢[J]. 化工新型材料, 2021, 12(20): 1-8. |
[33] |
李鹏, 王海燕, 朱纯. 金属掺杂类石墨相氮化碳的理论研究[J]. 化学研究, 2016, 27(2): 152-160. |
[34] |
Hu, S., Li, F., Fan, Z., et al. (2014) Band gap-Tunable Potassium Doped Graphitic Carbon Nitride with Enhanced Mineralization Ability. Dalton Transactions, 44, 1084-1092. https://doi.org/10.1039/C4DT02658F |
[35] |
李强, 石伟, 徐会君, 王本坤, 于华芹, 孙琦, 杜庆洋. Fe/g-C3N4催化剂的制备及其在可见光下的降解性能[J]. 工业水处理, 2021, 41(6): 211-215. |
[36] |
曹雪娟, 单柏林, 邓梅, 唐伯明. Fe掺杂g-C3N4光催化剂的制备及光催化性能研究[J]. 重庆交通大学学报(自然科学版), 2019, 38(11): 52-57. |
[37] |
Hu, S., Qu, X., Bai, J., et al. (2017) The Effect of Cu(I)-N Active Sites on the N2 Photofixation Ability over Flower-Like Copper Doped g-C3N4 Prepared via a Novel Molten Salt-Assisted Microwave Process: The Experimental and Density Functional Theory Simulation Analysis. Acs Sustainable Chemistry & Engineering, 5, 6863-6872. https://doi.org/10.1021/acssuschemeng.7b01089 |
[38] |
徐伟权, 梁概泉. Mo掺杂C3N4的制备及其光降解罗丹明B性能研究[J]. 科技资讯, 2019, 17(35): 59-63. |
[39] |
Wang, M., Guo, P., Zhang, Y., et al. (2018) Synthesis of Hollow Lantern-Like Eu(III)-Doped g-C3N4 with Enhanced Visible Light Photocatalytic Performance for Organic Degradation. Journal of Hazardous Materials, 349, 224-233. https://doi.org/10.1016/j.jhazmat.2018.01.058 |
[40] |
Arumugam, M., Tahir, M. and Praserthdam, P. (2021) Effect of Nonmetals (B, O, P, and S) Doped with Porous g-C3N4 for Improved Electron Transfer towards Photocatalytic CO2 Reduction with Water into CH4. Chemosphere, 286, Article ID: 131765. https://doi.org/10.1016/j.chemosphere.2021.131765 |
[41] |
Wageh, S., Al-Ghamdi, A.A., da Jafer, R., Li, X. and Zhang, P. (2021) A New Heterojunction in Photocatalysis: S-Scheme Heterojunction. Chinese Journal of Catalysis, 42, 667-669. https://doi.org/10.1016/S1872-2067(20)63705-6 |
[42] |
Qi, S., Liu, X., Zhang, R., et al. (2021) Preparation and Photocatalytic Properties of g-C3N4/BiOCl Heterojunction. Inorganic Chemistry Communications, 133, Article ID: 108907. https://doi.org/10.1016/j.inoche.2021.108907 |
[43] |
Zhang, R., Niu, S., Xiang, J., et al. (2020) Band-Potential Fluctuation in C3N4/BiOCl Hetero-Junction for Boosting Photo-Catalytic Activity. Separation and Puri-fication Technology, 261, Article ID: 118258. https://doi.org/10.1016/j.seppur.2020.118258 |
[44] |
Zhao, X., Guan, J., Li, J., et al. (2021) CeO2/3Dg-C3N4 Het-erojunction Deposited with Pt Cocatalyst for Enhanced Photocatalytic CO2 Reduction. Applied Surface Science, 537, Ar-ticle ID: 147891. https://doi.org/10.1016/j.apsusc.2020.147891 |
[45] |
Yang, H., He, D., Liu, C., et al. (2021) Visible-Light-Driven Photocatalytic Disinfection by S-Scheme α-Fe2O3/g-C3N4 Heterojunction: Bactericidal Performance and Mechanism In-sight. Chemosphere, 287, Article ID: 132072. https://doi.org/10.1016/j.chemosphere.2021.132072 |
[46] |
Wageh, S., Al-Ghamdi, A.A. and Liu, L.J. (2021) S-Scheme Heterojunction Photocatalyst for CO2 Photoreduction. Acta Physico-Chimica Sinica, 37, Article ID: 2010024. https://doi.org/10.3866/PKU.WHXB202010024 |
[47] |
张亚宣, 姚振龙, 汪遵盛, 等. Co-g-C3N4/La-TiO2复合材料光催化降解废水中乙基黄药[J]. 金属矿山, 2021(3): 206-213. |
[48] |
Song, X.X., Zhu, J., Zhang, C.P., et al. (2012) Advance in Research of Production, Application and Treatment Process of Xanthate in Dressing Wastewater. Guizhou Chemical Industry, 37, 19-22. |
[49] |
Wang, C., Rao, Z., Mahmood, A., et al. (2021) Improved Photocatalytic Oxidation Performance of Gaseous Acetaldehyde by Ternary g-C3N4/Ag-TiO2 Composites under Visible Light. Journal of Colloid and Interface Science, 602, 699-711. https://doi.org/10.1016/j.jcis.2021.05.186 |
[50] |
Yu, B., Meng, F., Khan, M.W., et al. (2020) Facile Synthesis of AgNPs Modified TiO2@g-C3N4 Heterojunction Composites with Enhanced Photocatalytic Activity under Simulated Sunlight. Materials Research Bulletin, 121, 110641.1-110641.8. https://doi.org/10.1016/j.materresbull.2019.110641 |
[51] |
Bo, Y.A., Fma, B., Mwk, A., et al. (2020) Synthesis of Hollow TiO2@g-C3N4/Co3O4 Core-Shell Microspheres for Effective Photooxidation Degradation of Tetracycline and MO. Ceramics International, 46, 13133-13143. https://doi.org/10.1016/j.ceramint.2020.02.087 |
[52] |
Zhang, Z., Liu, K., Feng, Z., et al. (2016) Hierarchical Sheet-on-Sheet ZnIn2S4/g-C3N4 Heterostructure with Highly Efficient Photocatalytic H2 Production Based on Photoin-duced Interfacial Charge Transfer. Scientific Reports, 6, Article No. 19221. https://doi.org/10.1038/srep19221 |