[1] |
Ferlay, J., Colombet, M., Soerjomataram, I., et al. (2019) Estimating the Global Cancer Incidence and Mortality in 2018: GLOBOCAN Sources and Methods. International Journal of Cancer, 144, 1941-1953. https://doi.org/10.1002/ijc.31937 |
[2] |
Chen, W., Zheng, R., Baade, P.D., et al. (2016) Cancer Statistics in China, 2015. CA: A Cancer Journal for Clinicians, 66, 115-132. https://doi.org/10.3322/caac.21338 |
[3] |
Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424. https://doi.org/10.3322/caac.21492 |
[4] |
Maeda, H., Kobayashi, M. and Sakamoto, J. (2015) Evaluation and Treatment of Malignant Ascites Secondary to Gastric Cancer. World Journal of Gastroenterology, 21, 10936-10947. https://doi.org/10.3748/wjg.v21.i39.10936 |
[5] |
Thomassen, I., van Gestel, Y.R., van Ramshorst, B., et al. (2014) Peritoneal Carcinomatosis of Gastric Origin: A Population-Based Study on Incidence, Survival and Risk Factors. International Journal of Cancer, 134, 622-628. https://doi.org/10.1002/ijc.28373 |
[6] |
Yamamoto, M., Baba, H., Kakeji, Y., et al. (2004) Prognostic Significance of Tumor Markers in Peritoneal Lavage in Advanced Gastric Cancer. Oncology, 67, 19-26. https://doi.org/10.1159/000080281 |
[7] |
Paget, S. (1989) Distribution of Secondary Growths in Cancer of the Breast. Cancer and Metastasis Reviews, 8, 98-101. |
[8] |
那迪. 胃癌细胞对腹膜间皮细胞损伤的研究[D]: [博士学位论文]. 沈阳: 中国医科大学, 2010. |
[9] |
Tsukada, T., Fushida, S., Harada, S., Yagi, Y., Kinoshita, J., Oyama, K., Tajima, H., Fujita, H., Ninomiya, I., Fujimura, T. and Ohta, T. (2012) The Role of Human Peritoneal Mesothelial Cells in the Fibrosis and Progression of Gastric Cancer. International Journal of Oncology, 41, 476-482. https://doi.org/10.3892/ijo.2012.1490 |
[10] |
Katz, L.H., Likhter, M., Jogunoori, W., Belkin, M., Ohshiro, K. and Mishra, L. (2016) TGF-β Signaling in Liver and Gastrointestinal Cancers. Cancer Letters, 379, 166-172. https://doi.org/10.1016/j.canlet.2016.03.033 |
[11] |
Moses, H.L., Roberts, A.B. and Derynck, R. (2016) The Discovery and Early Days of TGF-β: A Historical Perspective. Cold Spring Harbor Perspectives in Biology, 8, a021865. https://doi.org/10.1101/cshperspect.a021865 |
[12] |
Miyazawa, K. and Miyazono, K. (2017) Regulation of TGF-Beta Family Signaling by Inhibitory Smads. Cold Spring Harbor Perspectives in Biology, 9, a022095. https://doi.org/10.1101/cshperspect.a022095 |
[13] |
Fabregat, I., Fernando, J., Mainez, J. and Sancho, P. (2014) TGF-Beta Signaling in Cancer Treatment. Current Pharmaceutical Design, 20, 2934-2947. https://doi.org/10.2174/13816128113199990591 |
[14] |
Lv, Z.D., Zhao, W.J., Jin, L.Y., et al. (2017) Blocking TGF-β1 by P17 Peptides Attenuates Gastric Cancer Cell Induced Peritoneal Fibrosis and Prevents Peritoneal Dissemination in Vitro and in Vivo. Biomedicine & Pharmacotherapy, 88, 27-33. https://doi.org/10.1016/j.biopha.2017.01.039 |
[15] |
Hu, W.Q., et al. (2014) High Expression of Transform Growth Factor Beta 1 in Gastric Cancer Confers Worse Outcome: Results of a Cohort Study on 184 Patients. Hepatogastroenterology, 61, 245-250. |
[16] |
Dongre, A. and Weinberg, R.A. (2019) New Insights into the Mechanisms of Epithelial-Mesenchymal Transition and Implications for Cancer. Nature Reviews Molecular Cell Biology, 20, 69-84. https://doi.org/10.1038/s41580-018-0080-4 |
[17] |
Lamouille, S., Xu, J. and Derynck, R. (2014) Molecular Mechanisms of Epithelial-Mesenchymal Transition. Nature Reviews Molecular Cell Biology, 15, 178-196. https://doi.org/10.1038/nrm3758 |
[18] |
Jung, H.Y., Fattet, L. and Yang, J. (2015) Molecular Pathways: Linking Tumor Microenvironment to Epithelial-Mesenchymal Transition in Metastasis. Clinical Cancer Research, 21, 962-968. https://doi.org/10.1158/1078-0432.CCR-13-3173 |
[19] |
Mittal, V. (2018) Epithelial Mesenchymal Transition in Tumor Metastasis. Annual Review of Pathology: Mechanisms of Disease, 13, 395-412. https://doi.org/10.1146/annurev-pathol-020117-043854 |
[20] |
Morikawa, M., Derynck, R. and Miyazono, K. (2016) TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harbor Perspec-tives in Biology, 8, a021873. https://doi.org/10.1101/cshperspect.a021873 |
[21] |
Gonzalez, D.M. and Medici, D. (2014) Signaling Mechanisms of the Epithelial-Mesenchymal Transition. Science Signaling, 7, re8. https://doi.org/10.1126/scisignal.2005189 |
[22] |
Zavadil, J., Bitzer, M., Liang, D., Yang, Y.C., Massimi, A., Kneitz, S., Piek, E. and Bottinger, E.P. (2001) Genetic Programs of Epithelial Cell Plasticity Directed by Transforming Growth Factor-β. Proceedings of the National Academy of Sciences of the United States of America, 98, 6686-6691. https://doi.org/10.1073/pnas.111614398 |
[23] |
Lee, M.K., Pardoux, C., Hall, M.C., Lee, P.S., Warburton, D., Qing, J., Smith, S.M. and Derynck, R. (2007) TGF-β Activates Erk MAP Kinase Signalling through Direct Phosphorylation of ShcA. The EMBO Journal, 26, 3957-3967. https://doi.org/10.1038/sj.emboj.7601818 |
[24] |
Vo, B.T., Morton, D., Komaragiri, S., Millena, A.C., Leath, C. and Khan, S.A. (2013) TGF-β Effects on Prostate Cancer Cell Migration and Invasion Are Mediated by PGE2 through Activation of PI3K/AKT/mTOR Pathway. Endocrinology, 154, 1768-1779. https://doi.org/10.1210/en.2012-2074 |
[25] |
Carmeliet, P. and Jain, R.K. (2000) Angiogenesis in Cancer and Other Diseases. Nature, 407, 249-257. https://doi.org/10.1038/35025220 |
[26] |
Goumans, M.J., Valdimarsdottir, G., Itoh, S., Rosendahl, A., Sideras, P. and Dijke, P.T. (2002) Balancing the Activation State of the Endothelium via Two Distinct TGF-β Type I Receptors. The EMBO Journal, 21, 1743-1753. https://doi.org/10.1093/emboj/21.7.1743 |
[27] |
David, C.J. and Massague, J. (2018) Contextual Determinants of TGF-β Action in Development, Immunity and Cancer. Nature Reviews Molecular Cell Biology, 19, 419-435. https://doi.org/10.1038/s41580-018-0007-0 |
[28] |
Calon, A., Espinet, E., Palomo-Ponce, S., Tauriello, D.V.F., Iglesias, M., Céspedes, M.V., Sevillano, M., Nadal, C., Jung, P., Zhang, X.H.F., et al. (2012) Dependency of Colorectal Cancer on a TGF-β-Driven Program in Stromal Cells for Metastasis Initiation. Cancer Cell, 22, 571-584. https://doi.org/10.1016/j.ccr.2012.08.013 |
[29] |
Li, M.O., Wan, Y.Y., Sanjabi, S., Robertson, A.K. and Flavell, R.A. (2006) Transforming Growth Factor-Beta Regulation of Immune Responses. Annual Review of Immunology, 24, 99-146. https://doi.org/10.1146/annurev.immunol.24.021605.090737 |
[30] |
Vivier, E., Tomasello, E., Baratin, M., Walzer, T. and Ugolini, S. (2008) Functions of Natural Killer Cells. Nature Immunology, 9, 503-510. https://doi.org/10.1038/ni1582 |
[31] |
Crane, C.A., Han, S.J., Barry, J.J., Ahn, B.J. and Lanier L.L. (2010) TGF-Beta Downregulates the Activating Receptor NKG2D on NK Cells and CD8+ T Cells in Glioma Patients. Neuro-Oncology, 12, 7-13. https://doi.org/10.1093/neuonc/nop009 |
[32] |
Gong, D., Shi, W., Yi, S.J., Chen, H., Groffen, J. and Heisterkamp, N. (2012) TGFbeta Signaling Plays a Critical Role in Promoting Alternative Macrophage Activation. BMC Immunology, 13, Article No. 31. https://doi.org/10.1186/1471-2172-13-31 |
[33] |
Lippitz, B.E. and Harris, R.A. (2016) Cytokine Patterns in Cancer Patients: A Review of the Correlation between Interleukin 6 and Prognosis. OncoImmunology, 5, e1093722. https://doi.org/10.1080/2162402X.2015.1093722 |
[34] |
Kumari, N., Dwarakanath, B.S., Das, A. and Bhatt, A.N. (2016) Role of Interleukin-6 in Cancer Progression and Therapeutic Resistance. Tumor Biology, 37, 11553-11572. https://doi.org/10.1007/s13277-016-5098-7 |
[35] |
Sakamoto, S., Kagawa, S., Kuwada, K., Ito, A., Kajioka, H., Kakiuchi, Y., Watanabe, M., Kagawa, T., Yoshida, R., Kikuchi, S., Kuroda, S., Tazawa, H. and Fujiwara, T. (2019) Intra-peritoneal Cancer-Immune Microenvironment Promotes Peritoneal Dissemination of Gastric Cancer. OncoImmunology, 8, e1671760. https://doi.org/10.1080/2162402X.2019.1671760 |
[36] |
Na, Y.R., Lee, J.S., Lee, S.J., et al. (2013) Interleukin-6-Induced Twist and N-Cadherin Enhance Melanoma Cell Metastasis. Melanoma Research, 23, 434-443. https://doi.org/10.1097/CMR.0000000000000021 |
[37] |
Bromberg, J. and Wang, T.C. (2009) Inflammation and Cancer: IL-6 and STAT3 Complete the Link. Cancer Cell, 15, 79-80. https://doi.org/10.1016/j.ccr.2009.01.009 |
[38] |
Huang, C., Yang, G., Jiang, T., Zhu, G., Li, H. and Qiu, Z. (2011) The Effects and Mechanisms of Blockage of STAT3 Signaling Pathway on IL-6 Inducing EMT in Human Pancreatic Cancer Cells in Vitro. Neoplasma, 58, 396-405. https://doi.org/10.4149/neo_2011_05_396 |
[39] |
Chang, Q., Daly, L. and Bromberg, J. (2014) The IL-6 Feed-Forward Loop: A Driver of Tumorigenesis. Seminars in Immunology, 26, 48-53. https://doi.org/10.1016/j.smim.2014.01.007 |
[40] |
Patel, S.A. and Gooderham, N.J. (2015) IL6 Mediates Immune and Colorectal Cancer Cell Cross-Talk via miR-21 and miR-29b. Molecular Cancer Research, 13, 1502-1508. https://doi.org/10.1158/1541-7786.MCR-15-0147 |
[41] |
Karakasheva, T.A., Lin, E.W., Tang, Q., Qiao, E., Waldron, T.J., Soni, M., Klein-Szanto, A.J., Sahu, V., Basu, D., Ohashi, S., Baba, K., Giaccone, Z.T., Walker, S.R., Frank, D.A., Wileyto, E.P., Long, Q., Dunagin, M.C., Raj, A., Diehl, J.A., Wong, K.K., Bass, A.J. and Rustgi, A.K. (2018) IL-6 Mediates Cross-Talk between Tumor Cells and Activated Fibroblasts in the Tumor Microenvironment. Cancer Research, 78, 4957-4970. https://doi.org/10.1158/0008-5472.CAN-17-2268 |
[42] |
Eskiler, G.G., Bezdegumeli, E., Ozman, Z., Ozkan, A.D., Bilir, C., Kucukakca, B.N., Ince, M.N., Men, A.Y., Aktas, O., Horoz, Y.E., Akpinar, D., Genc, I. and Kaleli, S. (2019) IL-6 Mediated JAK/STAT3 Signaling Pathway in Cancer Patients with Cachexia. Bratislava Medical Journal, 120, 819-826. https://doi.org/10.4149/BLL_2019_136 |
[43] |
De Vita, F., Romano, C., Orditura, M., Galizia, G., Martinelli, E., Lieto, E. and Catalano, G. (2001) Interleukin-6 Serum Level Correlates with Survival in Advanced Gastrointes-tinal Cancer Patients but Is Not an Independent Prognostic Indicator. Journal of Interferon & Cytokine Research, 21, 45-52. https://doi.org/10.1089/107999001459150 |
[44] |
Kitamura, H., Ohno, Y., Toyoshima, Y., Ohtake, J., Homma, S., Kawamura, H., Takahashi, N. and Taketomi, A. (2017) Interleukin-6/STAT3 Signaling as a Promising Target to Improve the Efficacy of Cancer Immunotherapy. Cancer Science, 108, 1947-1952. https://doi.org/10.1111/cas.13332 |
[45] |
Shang A, Wang W, Gu C, Chen C, Zeng B, Yang Y, et al. (2019) Long Non-Coding RNA HOTTIP Enhances IL-6 Expression to Potentiate Immune Escape of Ovarian Cancer Cells by Upreg-ulating the Expression of PD-L1 in Neutrophils. Journal of Experimental & Clinical Cancer Research, 38, Article No. 411. https://doi.org/10.1186/s13046-019-1394-6 |
[46] |
Bharti, R., Dey, G. and Mandal, M. (2016) Cancer Development, Chemoresistance, Epithelial to Mesenchymal Transition and Stem Cells: A Snapshot of IL-6 Mediated Involvement. Cancer Letters, 375, 51-61. https://doi.org/10.1016/j.canlet.2016.02.048 |
[47] |
Sun, J. and Fu, L. (2017) [IL-6 Promotes Gastric Cancer Cell Proliferation and EMT through Regulating miR-152/PIK3R3 Pathway]. Journal of Central South University (Medical Sciences), 42, 1241-1247. |
[48] |
Kalluri, R. (2016) The Biology and Function of Fibroblasts in Cancer. Nature Reviews Cancer, 16, 582-598. https://doi.org/10.1038/nrc.2016.73 |
[49] |
Wu, X., Tao, P., Zhou, Q., et al. (2017) IL-6 Secreted by Cancer-Associated Fibroblasts Promotes Epithelial-Mesenchymal Transition and Metastasis of Gastric Cancer via JAK2/STAT3 Signaling Pathway. Oncotarget, 8, 20741-20750. https://doi.org/10.18632/oncotarget.15119 |