[1] |
Liu, Y., Wang, R., Wang, Z., Li, D. and Cui, T. (2022) Formation of Twelve-Fold Iodine Coordination at High Pressure. Nature Communications, 13, Article No. 412. https://doi.org/10.1038/s41467-022-28083-4 |
[2] |
Luo, D., Qiao, X. and Dronskowski, R. (2021) Predicting Nitrogen-Based Families of Compounds: Transition-Metal Guanidinates TCN3 (T=V, Nb, Ta) and Ortho-Nitrido Carbonates T’2CN4 (T’=Ti, Zr, Hf). Angewandte Chemie International Edition, 60, 486-492. https://doi.org/10.1002/anie.202011196 |
[3] |
Luo, W., Nakamura, Y., Park, J. and Yoon, M. (2021) Co-balt-Based Magnetic Weyl Semimetals with High-Thermodynamic Stabilities. npj Computational Materials, 7, Article No. 2. https://doi.org/10.1038/s41524-020-00461-w |
[4] |
Liu, X., Niu, H. and Oganov, A.R. (2021) COPEX: Co-Evolutionary Crystal Structure Prediction Algorithm for Complex Systems. npj Computational Materials, 7, Article No. 199. https://doi.org/10.1038/s41524-021-00668-5 |
[5] |
Kvashnin, A.G., Tantardini, C., Zakaryan, H.A., Kvashnina, Y.A. and Oganov, A.R. (2020) Computational Search for New W-Mo-B Compounds. Chemistry of Materi-als, 32, 7028-7035. https://doi.org/10.1021/acs.chemmater.0c02440 |
[6] |
Pannetier, J., Bassas-Alsina, J., Rodri-guez-Carvajal, J. and Caignaert, V. (1990) Prediction of Crystal Structures from Crystal Chemistry Rules by Simulated Annealing. Nature, 346, 343-345. https://doi.org/10.1038/346343a0 |
[7] |
Schön, J.C. and Jansen, M. (1996) First Step towards Planning of Syntheses in Solid-State Chemistry: Determination of Promising Structure Candidates by Global Optimization. Angewandte Chemie International Edition in English, 35, 1286-1304. https://doi.org/10.1002/anie.199612861 |
[8] |
Wales, D.J. and Doye, J.P. (1997) Global Optimization by Ba-sin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms. The Journal of Physical Chemistry A, 101, 5111-5116. https://doi.org/10.1021/jp970984n |
[9] |
Goedecke, S. (2004) Minima Hopping: An Efficient Search Method for the Global Minimum of the Potential Energy Surface of Complex Molecular Systems. Journal of Chemical Physics, 120, 9911-9917. https://doi.org/10.1063/1.1724816 |
[10] |
Pickard, C.J. and Needs, R.J. (2006) High-Pressure Phases of Silane. Physical Review Letters, 97, Article ID: 045504. https://doi.org/10.1103/PhysRevLett.97.045504 |
[11] |
Pickard, C.J. and Needs, R.J. (2011) Ab Initio Random Structure Searching. Journal of Physics: Condensed Matter, 23, Article ID: 053201. https://doi.org/10.1088/0953-8984/23/5/053201 |
[12] |
Woodley, S., Battle, P., Gale, J. and Catlow, C.A. (1999) The Prediction of Inorganic Crystal Structures Using a Genetic Algorithm and Energy Minimisation. Physical Chemistry Chemical Physics, 1, 2535-2542. https://doi.org/10.1039/a901227c |
[13] |
Abraham, N.L. and Probert, M.I. (2006) A Periodic Genetic Algorithm with Real-Space Representation for Crystal Structure and Polymorph Prediction. Physical Review B, 73, Article ID: 224104. https://doi.org/10.1103/PhysRevB.73.224104 |
[14] |
Oganov, A.R. and Glass, C.W. (2006) Crystal Structure Pre-diction Using Ab Initio Evolutionary Techniques: Principles and Applications. Journal of Chemical Physics, 124, 201-419. https://doi.org/10.1063/1.2210932 |
[15] |
Trimarchi, G. and Zunger, A. (2007) Global Space-Group Opti-mization Problem: Finding the Stablest Crystal Structure without Constraints. Physical Review B, 75, Article ID: 104113. https://doi.org/10.1103/PhysRevB.75.104113 |
[16] |
Martoňák, R., Laio, A. and Parrinello, M. (2003) Predicting Crystal Structures: The Parrinello-Rahman Method Revisited. Physical Review Letters, 90, Article ID: 075503. https://doi.org/10.1103/PhysRevLett.90.075503 |
[17] |
Call, S.T., Zubarev, D.Y. and Boldyrev, A.I. (2007) Global Minimum Structure Searches via Particle Swarm Optimization. Journal of Computational Chemistry, 28, 1177-1186. https://doi.org/10.1002/jcc.20621 |
[18] |
Laio, A. and Parrinello, M. (2002) Escaping Free-Energy Minima. Pro-ceedings of the National Academy of Sciences of the United States of America, 99, 12562-12566. https://doi.org/10.1073/pnas.202427399 |
[19] |
Glass, C.W., Oganov, A.R. and Hansen, N. (2006) USPEX—Evolutionary Crystal Structure Prediction. Computer Physics Communications, 175, 713-720. https://doi.org/10.1016/j.cpc.2006.07.020 |
[20] |
Oganov, A., Lyakhov, A. and Valle, M. (2011) How Evolutionary Crystal Structure Prediction Works—And Why. Accounts of Chemical Research, 44, 227-237. https://doi.org/10.1021/ar1001318 |
[21] |
Wang, Y., Lv, J., Zhu, L. and Ma, Y. (2010) Crystal Structure Prediction via Particle Swarm Optimization. Physics Review B, 82, Article ID: 094116. https://doi.org/10.1103/PhysRevB.82.094116 |
[22] |
Wang, Y., Lv, J., Zhu, L. and Ma, Y. (2012) CALYPSO: A Method for Crystal Structure Prediction. Computer Physics Communications, 183, 2063-2070. https://doi.org/10.1016/j.cpc.2012.05.008 |
[23] |
Zhang, Y., Wang, H., Wang, Y., Zhang, L. and Ma, Y. (2016) Computer-Assisted Inverse Design of Inorganic Electrides. Physical Review X, 7, Article ID: 019903. https://doi.org/10.1103/PhysRevX.7.019903 |
[24] |
Van Eijck, B., Mooij, W.T. and Kroon, J. (1995) Attempted Prediction of the Crystal Structures of Six Monosaccharides. Acta Crystallographica Section B: Structural Science, B51, 99-103. https://doi.org/10.1107/S0108768194009651 |
[25] |
Lonie, D.C. and Zurek, E. (2011) XTALOPT: An Open-Source Evolutionary Algorithm for Crystal Structure Prediction. Computer Physics Communications, 182, 372-387. https://doi.org/10.1016/j.cpc.2010.07.048 |
[26] |
Price, S.L., Leslie, M., Welch, G.W., Habgood, M., Price, L.S., Karamertzanis, P.G. and Day, G.M. (2010) Modelling Organic Crystal Structures Using Distributed Multipole and Polarizability-Based Model Intermolecular Potentials. Physical Chemistry Chemical Physics, 12, 8478-8490. https://doi.org/10.1039/c004164e |
[27] |
Tipton, W.W. and Hennig, R.G. (2013) A Grand Canonical Genetic Algo-rithm for the Prediction of Multi-Component Phase Diagrams and Testing of Empirical Potentials. Journal of Physics: Condensed Matter, 25, Article ID: 495401. https://doi.org/10.1088/0953-8984/25/49/495401 |
[28] |
Neumann, M., van de Streek, J., Fabbiani, F., Hidber, P. and Grassmann, O. (2015) Combined Crystal Structure Prediction and High-Pressure Crystallization in Rational Phar-maceutical Polymorph Screening. Nature Communications, 6, Article No. 7793. https://doi.org/10.1038/ncomms8793 |
[29] |
Neumann, M. and van de Streek, J. (2018) How Many Ritonavir Cases Are There Still out There? Faraday Discussions, 211, 441-458. https://doi.org/10.1039/C8FD00069G |
[30] |
Mor-tazavi, M., Hoja, J., Aerts, L., Quéré, L., van de Streek, J., Neumann, M.A. and Tkatchenko, A. (2019) Computational Polymorph Screening Reveals Late-Appearing and Poorly-Soluble form of Rotigotine. Communications Chemistry, 2, Article No. 70. https://doi.org/10.1038/s42004-019-0171-y |
[31] |
Zhang, Y.Y., Gao, W., Chen, S., Xiang, H. and Gong, X.G. (2015) Inverse Design of Materials by Multi-Objective Differential Evolution. Computational Materials Science, 98, 51-55. https://doi.org/10.1016/j.commatsci.2014.10.054 |
[32] |
Curtis, F., Li, X., Rose, T., Vazquez-Mayagoitia, A., Bhattacharya, S., Ghiringhelli, L.M. and Marom, N. (2018) GAtor: A First-Principles Genetic Algorithm for Molecular Crystal Structure Prediction. Journal of Chemical Theory and Computation, 14, 2246-2264. https://doi.org/10.1021/acs.jctc.7b01152 |
[33] |
Hajinazar, S., Thorn, A., Sandoval, E.D., Kharabadze, S. and Kol-mogorov, A.N. (2021) MAISE: Construction of Neural Network Interatomic Models and Evolutionary Structure Opti-mization. Computer Physics Communications, 259, Article ID: 107679. https://doi.org/10.1016/j.cpc.2020.107679 |
[34] |
Yamashita, T., Kanehira, S., Sato, N., Kino, H., Terayama, K., Sawahata, H., et al. (2021) CrySPY: A Crystal Structure Prediction Tool Accelerated by Machine Learning. Science and Technology of Advanced Materials: Methods, 1, 87-97. https://doi.org/10.1080/27660400.2021.1943171 |
[35] |
Mosley, J.W., Operskalski, E.A., Tobler, L.H., Andrews, W.W., Phelps, B., Dockter, J., et al. (1987) Genetic Algorithms and Their Applications. Proceedings of the 2nd Interna-tional Conference on Genetic Algorithms, L. Erlbaum Associates Inc., 1-8. |
[36] |
Seko, A., Togo, A. and Tanaka, I. (2018) Descriptors for Machine Learning of Materials Data. In: Tanaka, I., Ed., Nanoinformatics, Springer, Singapore, 3-23. https://doi.org/10.1007/978-981-10-7617-6_1 |
[37] |
Thompson, A.P., Aktulga, H.M., Berger, R., Bolintineanu, D.S., Brown, W.M., Crozier, P.S., et al. (2022) LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales. Computer Physics Communications, 271, Article ID: 108171. https://doi.org/10.1016/j.cpc.2021.108171 |
[38] |
Kresse, G. and Furthmüller, J. (1996) Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B, 54, 11169-11186. https://doi.org/10.1103/PhysRevB.54.11169 |
[39] |
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., et al. (2016) Gaussian-16 Revision B.01. Gaussian Inc., Wallingford, CT. |
[40] |
Yoo, A.B., Jette, M.A. and Grondona, M. (2003) SLURM: Simple Linux Utility for Resource Management. Workshop on Job Scheduling Strategies for Parallel Processing, Seattle, 24 June 2004, 44-60. https://doi.org/10.1007/10968987_3 |
[41] |
Bode, B., Halstead, D.M., Kendall, R., Lei, Z. and Jackson, D. (2000) The Portable Batch Scheduler and the Maui Scheduler on Linux Clusters. 4th Annual Linux Showcase & Conference (ALS 2000), Atlanta, 10-14 October 2000, 27-34. |
[42] |
Gentzsch, W. (2001) Sun Grid Engine: Towards Creating a Compute Power Grid. Proceedings First IEEE/ACM International Symposium on Cluster Computing and the Grid, Brisbane, 15-18 May 2001, 35-36. https://doi.org/10.1109/CCGRID.2001.923173 |
[43] |
Thain, D., Tannenbaum, T. and Livny, M. (2005) Distributed Computing in Practice: The Condor Experience. Concurrency and Computation: Practice and Experience, 17, 323-356. https://doi.org/10.1002/cpe.938 |
[44] |
Banker, K., Garrett, D., Bakkum, P. and Verch, S. (2016) Mongodb in Action: Covers Mongodb Version 3.0. Simon & Schuster, New York. |
[45] |
Barrett, C.S. (1956) X-Ray Study of the Alkali Metals at Low Temperatures. Acta Crystallographica, 9, 671-677. https://doi.org/10.1107/S0365110X56001790 |
[46] |
Trucano, P. and Chen, R. (1975) Structure of Graphite by Neutron Diffraction. Nature, 258, 136-137. https://doi.org/10.1038/258136a0 |
[47] |
Raynor, G. and Hume-Rothery, W. (1939) A Technique for the X-Ray Powder Photography of Reactive Metals and Alloys with Special Reference to the Lattice Spacing of mg at High Tem-peratures. Journal of the Institute of Metals, 65, 477-485. |
[48] |
Wu, H., Hartman, M., Udovic, T., Rush, J., Zhou, W., Bowman, R. and Vajo, J. (2007) Structure of the Novel Ternary Hydrides Li4Tt2D (Tt =Si and Ge). Acta Crystallo-graphica. Section B, Structural Science, B63, 63-68. https://doi.org/10.1107/S0108768106046465 |
[49] |
Elliot, A. (2010) Structure of Pyrrhotite 5C (Fe9S10) Acta Crys-tallographica. Section B, Structural Science, B66, 271-279. https://doi.org/10.1107/S0108768110011845 |
[50] |
H. d’Amour, W.D. and Schulz, H. (1979) Structure Determination of α-Quartz up to 68 x 108 Pa. Acta Crystallographica. Section B, Structural Science, B35, 550-555. https://doi.org/10.1107/S056774087900412X |
[51] |
Kuwayama, Y., Hirose, K., Sata, N. and Ohishi, Y. (2005) The Pyrite-Type High-Pressure Form of Silica. Science, 309, 923-925. https://doi.org/10.1126/science.1114879 |
[52] |
Irving, P.E. and Beevers, C.J. (1971) Some Metallographie and Lat-tice Parameter Observations on Titanium Hydride. Metallurgical Transactions, 2, 613-615. https://doi.org/10.1007/BF02663362 |
[53] |
Pauling, L. and Hendricks, S.B. (1925) The Crystal Structures of Hema-tite and Corundum. Journal of the American Chemical Society, 47, 781-790. https://doi.org/10.1021/ja01680a027 |
[54] |
Duan, W., Wentzcovitch, R.M. and Thomson, K.T. (1998) First-Principles Study of High Pressure Alumina Polymorphs. Physical Review B, 57, 10363-10369. https://doi.org/10.1103/PhysRevB.57.10363 |
[55] |
Oganov, A.R. and Ono, S. (2004) Theoretical and Experimental Evidence for a Post-Perovskite Phase of MgSiO3 in Earth’s D’’ Layer. Nature, 430, 445-448. https://doi.org/10.1038/nature02701 |
[56] |
Fang, C.M. and de With, G. (2002) Crystal Structure and Chemical Bonding of the High-Pressure Phase of mgal2o4 from First-Principles Calculations. Philosophical Magazine A, 82, 2885-2894. https://doi.org/10.1080/01418610208240072 |