[1] |
Barker, D.J. and Osmond, C. (1986) Infant Mortality, Childhood Nutrition, and Ischaemic Heart Disease in England and Wales. The Lancet, 327, 1077-1081. https://doi.org/10.1016/S0140-6736(86)91340-1 |
[2] |
Lucas, A. (1994) Role of Nutritional Programming in Determining Adult Morbidity. Archives of Disease in Childhood, 71, 288-290. https://doi.org/10.1136/adc.71.4.288 |
[3] |
Lucas, A., Baker, B., Desai, M., et al. (1996) Nutrition in Pregnant or Lactating Rats Programs Lipid Metabolism in the Offspring. British Journal of Nutrition, 76, 605-612. https://doi.org/10.1079/BJN19960066 |
[4] |
Lucas, A. (1998) Programming by Early Nutrition: An Experimental Approach. The Journal of Nutrition, 128, 401s-406s. https://doi.org/10.1093/jn/128.2.401S |
[5] |
Ozanne, S.E. (2001) Metabolic Programming in Animals: Type 2 Diabetes. British Medical Bulletin, 60, 143-152. https://doi.org/10.1093/bmb/60.1.143 |
[6] |
郑辉, 谢云. 代谢印记:妊娠期母体营养状况与其后代成年期肥胖关系的探讨[J]. 中华围产医学杂志, 2008, 11(3): 205-207. |
[7] |
Lemley, C.O., Littlejohn, B.P. and Burnett, D.D. (2021) Fetal Programming. In: Hopper, R.M., Ed., Bovine Reproduction, 2nd Edition, John Wiley & Sons, Inc., Hoboken, 339-346. https://doi.org/10.1002/9781119602484.ch27 |
[8] |
Symonds, M.E., Sebert, S.P., Hyatt, M.A., et al. (2009) Nutritional Programming of the Metabolic Syndrome. Nature Reviews Endocrinology, 5, 604-610. https://doi.org/10.1038/nrendo.2009.195 |
[9] |
Campisano, S., La Colla, A., Echarte, S.M., et al. (2019) Interplay between Early-Life Malnutrition, Epigenetic Modulation of the Immune Function and Liver Diseases. Nutrition Research Reviews, 32, 128-145. https://doi.org/10.1017/S0954422418000239 |
[10] |
Guilloteau, P., Zabielski, R., Hammon, H.M., et al. (2010) Nutritional Programming of Gastrointestinal Tract Development. Is the Pig a Good Model for Man? Nutrition Research Reviews, 23, 4-22. https://doi.org/10.1017/S0954422410000077 |
[11] |
Aguila, M.B., Ornellas, F. and Mandarim-de-Lacerda, C.A. (2021) Nutritional Research and Fetal Programming: Parental Nutrition Influences the Structure and Function of the Organs. International Journal of Morphology, 39, 327-334. https://doi.org/10.4067/S0717-95022021000100327 |
[12] |
吕佳琪, 华雯妤, 王恬. 胚胎营养环境对动物出生后营养代谢的调控研究[J]. 动物营养学报, 2016, 28(2): 335-344. |
[13] |
Yang, C., Zhou, X., Yang, H., et al. (2021) Transcriptome Analysis Reveals Liver Metabolism Programming in Kids from Nutritional Restricted Goats During Mid-Gestation. PeerJ, 9, Article ID: e10593. https://doi.org/10.7717/peerj.10593 |
[14] |
Cushman, R.A., Snider, A. and Crouse, M.S. (2021) Can We Developmentally Program the Epigenome to Improve Traits Relevant to Production in Cattle? Journal of Animal Science, 99, 20. https://doi.org/10.1093/jas/skab054.035 |
[15] |
Hou, Z. and Fuiman, L.A. (2020) Nutritional Programming in Fishes: Insights from Mammalian Studies. Reviews in Fish Biology and Fisheries, 30, 67-92. https://doi.org/10.1007/s11160-019-09590-y |
[16] |
Panserat, S., Marandel, L., Seiliez, I., et al. (2019) New Insights on Intermediary Metabolism for a Better Understanding of Nutrition in Teleosts. Annual Review of Animal Biosciences, 7, 195-220. https://doi.org/10.1146/annurev-animal-020518-115250 |
[17] |
Hou, Z., Lu, X., Tiziani, S., et al. (2022) Nutritional Programming by Maternal Diet Alters Offspring Lipid Metabolism in a Marine Teleost. Fish Physiology and Biochemistry, 48, 535-553. https://doi.org/10.1007/s10695-022-01069-1 |
[18] |
麦康森. 水产动物营养与饲料学[M] 第二版. 北京: 中国农业出版社, 2011. |
[19] |
Palace, V.P. and Werner, J. (2006) Vitamins A and E in the Maternal Diet Influence Egg Quality and Early Life Stage Development in Fish: A Review. Scientia Marina, 70, 41-57. https://doi.org/10.3989/scimar.2006.70s241 |
[20] |
Engrola, S., Aragão, C., Valente, L.M., et al. (2018) Nutritional Modulation of Marine Fish Larvae Performance. In: Yúfera, M., Ed., Emerging Issues in Fish Larvae Research, Springer, Cham, 209-228. https://doi.org/10.1007/978-3-319-73244-2_7 |
[21] |
Skjærven, K.H., Mommens, M., Adam, A.-C., et al. (2022) Earlier or Delayed Seasonal Broodstock Spawning Changes Nutritional Status and Metabolic Programming of Growth for Next-Generation Atlantic Salmon. Aquaculture, 554, Article ID: 738187. https://doi.org/10.1016/j.aquaculture.2022.738187 |
[22] |
Buddington, R.K., Krogdahl, A. and Bakke-McKellep, A.M. (1997) The Intestines of Carnivorous Fish: Structure and Functions and the Relations with Diet. Acta Physiologica Scandinavica. Supplementum, 638, 67-80. |
[23] |
Pittman, K., Yúfera, M., Pavlidis, M., et al. (2013) Fantastically Plastic: Fish Larvae Equipped for a New World. Reviews in Aquaculture, 5, S224-S267. https://doi.org/10.1111/raq.12034 |
[24] |
Le Boucher, R., Vandeputte, M., Dupont-Nivet, M., et al. (2013) Genotype by Diet Interactions in European Sea Bass (Dicentrarchus labrax L.): Nutritional Challenge with Totally Plant-Based Diets. Journal of Animal Science, 91, 44-56. https://doi.org/10.2527/jas.2012-5311 |
[25] |
Le Boucher, R., Quillet, E., Vandeputte, M., et al. (2011) Plant-Based Diet in Rainbow Trout (Oncorhynchus mykiss Walbaum): Are There Genotype-Diet Interactions for Main Production Traits When Fish Are Fed Marine Vs. Plant- Based Diets from the First Meal? Aquaculture, 321, 41-48. https://doi.org/10.1016/j.aquaculture.2011.08.010 |
[26] |
Xu, H., Turkmen, S., Rimoldi, S., et al. (2019) Nutritional Intervention through Dietary Vegetable Proteins and Lipids to Gilthead Sea Bream (Sparus Aurata) Broodstock Affects the Offspring Utilization of a Low Fishmeal/Fish Oil Diet. Aquaculture, 513, Article ID: 734402. https://doi.org/10.1016/j.aquaculture.2019.734402 |
[27] |
Balasubramanian, M.N., Panserat, S., Dupont-Nivet, M., et al. (2016) Molecular Pathways Associated with the Nutritional Programming of Plant-Based Diet Acceptance in Rainbow Trout Following an Early Feeding Exposure. BMC Genomics, 17, Article No. 449. https://doi.org/10.1186/s12864-016-2804-1 |
[28] |
Geurden, I., Borchert, P., Balasubramanian, M.N., et al. (2013) The Positive Impact of the Early-Feeding of a Plant- Based Diet on Its Future Acceptance and Utilisation in Rainbow Trout. PLOS ONE, 8, Article ID: e83162. https://doi.org/10.1371/journal.pone.0083162 |
[29] |
Izquierdo, M.S., Turkmen, S., Montero, D., et al. (2015) Nutritional Programming through Broodstock Diets to Improve Utilization of Very Low Fishmeal and Fish Oil Diets in Gilthead Sea Bream. Aquaculture, 449, 18-26. https://doi.org/10.1016/j.aquaculture.2015.03.032 |
[30] |
Turkmen, S., Zamorano, M.J., Fernández-Palacios, H., et al. (2017) Parental Nutritional Programming and a Reminder During Juvenile Stage Affect Growth, Lipid Metabolism and Utilisation in Later Developmental Stages of a Marine Teleost, the Gilthead Sea Bream (Sparus aurata). British Journal of Nutrition, 118, 500-512. https://doi.org/10.1017/S0007114517002434 |
[31] |
Kumar, S., J. Sándor, Z., Biró, J., et al. (2022) Does Nutritional History Impact on Future Performance and Utilization of Plant Based Diet in Common Carp? Aquaculture, 551, Article ID: 737935. https://doi.org/10.1016/j.aquaculture.2022.737935 |
[32] |
Cushman, R.A., Snider, A. and Crouse, M.S. (2016) Soybean Meal and Soy Protein Concentrate in Early Diet Elicit Different Nutritional Programming Effects on Juvenile Zebrafish. Zebrafish, 13, 61-69. https://doi.org/10.1089/zeb.2015.1131 |
[33] |
Clarkson, M., Migaud, H., Metochis, C., et al. (2017) Early Nutritional Intervention Can Improve Utilisation of Vegetable-Based Diets in Diploid and Triploid Atlantic Salmon (Salmo salar, L.). British Journal of Nutrition, 118, 17-29. https://doi.org/10.1017/S0007114517001842 |
[34] |
Kemski, M., Wick, M. and Dabrowski, K. (2018) Nutritional Programming Effects on Growth and Reproduction of Broodstock and Embryonic Development of Progeny in Yellow Perch (Perca flavescens) Fed Soybean Meal-Based Diets. Aquaculture, 497, 452-461. https://doi.org/10.1016/j.aquaculture.2018.07.001 |
[35] |
Molinari, G.S., Wojno, M. and Kwasek, K. (2021) The Use of Live Food as a Vehicle of Soybean Meal for Nutritional Programming of Largemouth Bass Micropterus Salmoides. Scientific Reports, 11, Article No. 10899. https://doi.org/10.1038/s41598-021-89803-2 |
[36] |
李海洁. 早期营养规划对黄颡鱼生长性能、肠道结构和mtor信号通路关键因子的影响[D]: [硕士学位论文]. 郑州: 河南农业大学, 2021. |
[37] |
Michl, S.C., Weis, B., Hutchings, J.A., et al. (2017) Plastic Responses by Wild Brown Trout (Salmo trutta) to Plant- Based Diets. Aquaculture, 476, 19-28. https://doi.org/10.1016/j.aquaculture.2017.04.006 |
[38] |
Kwasek, K., Wojno, M., Patula, S., et al. (2021) The Effect of First Feeding Exposure of Larval Largemouth Bass to a Formulated Soybean Meal-Based or Soy Saponin-Supplemented Diet on Fish Growth Performance and Gut Microbiome. North American Journal of Aquaculture, 83, 312-326. https://doi.org/10.1002/naaq.10200 |
[39] |
魏帮鸿, 杨志刚, 施秋燕, 等. 水生动物脂肪酸延长酶基因研究进展[J]. 基因组学与应用生物学, 2017, 36(10): 4159-4165. |
[40] |
Morais, S., Mendes, A.C., Castanheira, M.F., et al. (2014) New Formulated Diets for Solea senegalensis Broodstock: Effects of Parental Nutrition on Biosynthesis of Long-Chain Polyunsaturated Fatty Acids and Performance of Early Larval Stages and Juvenile Fish. Aquaculture, 432, 374-382. https://doi.org/10.1016/j.aquaculture.2014.04.033 |
[41] |
Perez, K.O. and Fuiman, L.A. (2015) Maternal Diet and Larval Diet Influence Survival Skills of Larval Red Drum Sciaenops ocellatus. Journal of Fish Biology, 86, 1286-1304. https://doi.org/10.1111/jfb.12637 |
[42] |
Fuiman, L.A. and Perez, K.O. (2015) Metabolic Programming Mediated by an Essential Fatty Acid Alters Body Composition and Survival Skills of a Marine Fish. Proceedings of the Royal Society B: Biological Sciences, 282, Article ID: 20151414. https://doi.org/10.1098/rspb.2015.1414 |
[43] |
Cardona, E., Segret, E., Cachelou, Y., et al. (2022) Effect of Micro-Algae Schizochytrium sp. Supplementation in Plant Diet on Reproduction of Female Rainbow Trout (Oncorhynchus mykiss): Maternal Programming Impact of Progeny. Journal of Animal Science and Biotechnology, 13, Article No. 33. https://doi.org/10.1186/s40104-022-00680-9 |
[44] |
艾立川. N-3HUFA对西伯利亚鲟亲鱼繁殖力及子代发育和脂肪代谢的影响[D]: [硕士学位论文]. 北京: 中国农业科学院, 2015. |
[45] |
Luo, L., Wei, H., Ai, L., et al. (2019) Effects of Early Long-Chain N-3hufa Programming on Growth, Antioxidant Response and Lipid Metabolism of Siberian Sturgeon (Acipenser baerii Brandt). Aquaculture, 509, 96-103. https://doi.org/10.1016/j.aquaculture.2019.05.032 |
[46] |
Krogdahl, Å., Hemre, G.I. and Mommsen, T. (2005) Carbohydrates in Fish Nutrition: Digestion and Absorption in Postlarval Stages. Aquaculture Nutrition, 11, 103-122. https://doi.org/10.1111/j.1365-2095.2004.00327.x |
[47] |
Callet, T., Hu, H., Larroquet, L., et al. (2020) Exploring the Impact of a Low-Protein High-Carbohydrate Diet in Mature Broodstock of a Glucose-Intolerant Teleost, the Rainbow Trout. Frontiers in Physiology, 11, Article No. 303. https://doi.org/10.3389/fphys.2020.00303 |
[48] |
Gong, G., Xue, M., Wang, J., et al. (2015) The Regulation of Gluconeogenesis in the Siberian Sturgeon (Acipenser baerii) Affected Later in Life by a Short-Term High-Glucose Programming during Early Life. Aquaculture, 436, 127-136. https://doi.org/10.1016/j.aquaculture.2014.10.044 |
[49] |
Liang, X., Wang, J., Gong, G., et al. (2017) Gluconeogenesis during Starvation and Refeeding Phase Is Affected by Previous Dietary Carbohydrates Levels and a Glucose Stimuli during Early Life in Siberian Sturgeon (Acipenser baerii). Animal Nutrition, 3, 284-294. https://doi.org/10.1016/j.aninu.2017.06.001 |
[50] |
Rocha, F., Dias, J., Geurden, I., et al. (2016) High-Glucose Feeding of Gilthead Seabream (Sparus aurata) Larvae: Effects on Molecular and Metabolic Pathways. Aquaculture, 451, 241-253. https://doi.org/10.1016/j.aquaculture.2015.09.015 |
[51] |
Kumkhong, S., Marandel, L., Plagnes-Juan, E., et al. (2020) Glucose Injection into Yolk Positively Modulates Intermediary Metabolism and Growth Performance in Juvenile Nile Tilapia (Oreochromis niloticus). Frontiers in Physiology, 11, Article No. 286. https://doi.org/10.3389/fphys.2020.00286 |
[52] |
Kumkhong, S., Marandel, L., Plagnes-Juan, E., et al. (2021) Glucose Injection into the Yolk Influences Intermediary Metabolism in Adult Nile Tilapia Fed with High Levels of Carbohydrates. Animal, 15, Article ID: 100347. https://doi.org/10.1016/j.animal.2021.100347 |
[53] |
Xiao, Q., Li, J., Liang, X.-F., et al. (2020) Programming of High-Glucose Diet Acceptance in Chinese Perch (Siniperca chuatsi) Following an Early Exposure. Aquaculture Reports, 18, Article ID: 100534. https://doi.org/10.1016/j.aqrep.2020.100534 |
[54] |
Geurden, I., Aramendi, M., Zambonino-Infante, J., et al. (2007) Early Feeding of Carnivorous Rainbow Trout (Oncorhynchus mykiss) with a Hyperglucidic Diet during a Short Period: Effect on Dietary Glucose Utilization in Juveniles. American journal of physiology. Regulatory, Integrative and Comparative Physiology, 6, R2275-R2283. https://doi.org/10.1152/ajpregu.00444.2006 |
[55] |
方刘. 鳜鱼, 草鱼, 斑马鱼早期高糖营养程序化对糖代谢调控的研究[D]: [博士学位论文]. 武汉: 华中农业大学, 2015. |
[56] |
Zambonino-Infante, J.L., Panserat, S., Servili, A., et al. (2019) Nutritional Programming by Dietary Carbohydrates in European Sea Bass Larvae: Not Always What Expected at Juvenile Stage. Aquaculture, 501, 441-447. https://doi.org/10.1016/j.aquaculture.2018.11.056 |
[57] |
Skjærven, K.H., Jakt, L.M., Fernandes, J.M.O., et al. (2018) Parental Micronutrient Deficiency Distorts Liver DNA Methylation and Expression of Lipid Genes Associated with a Fatty-Liver-Like Phenotype in Offspring. Scientific Reports, 8, Article No. 3055. https://doi.org/10.1038/s41598-018-21211-5 |
[58] |
Cleveland, B.M., Leeds, T.D., Picklo, M.J., et al. (2020) Supplementing Rainbow Trout (Oncorhynchus mykiss) Broodstock Diets with Choline and Methionine Improves Growth in Offspring. Journal of the World Aquaculture Society, 51, 266-281. https://doi.org/10.1111/jwas.12634 |
[59] |
Panserat, S., Marandel, L., Geurden, I., et al. (2017) Muscle Catabolic Capacities and Global Hepatic Epigenome Are Modified in Juvenile Rainbow Trout Fed Different Vitamin Levels at First Feeding. Aquaculture, 468, 515-523. https://doi.org/10.1016/j.aquaculture.2016.11.021 |
[60] |
Seite, S., Masagounder, K., Heraud, C., et al. (2019) Early Feeding of Rainbow Trout (Oncorhynchus mykiss) with Methionine-Deficient Diet over a 2 Week Period: Consequences for Liver Mitochondria in Juveniles. Journal of Experimental Biology, 222, Article ID: jeb203687. https://doi.org/10.1242/jeb.203687 |
[61] |
邓凯东, 张佑祥. 早期营养对免疫系统的长期调节作用[J]. 农业科学与技术(英文版), 2004, 5(3): 11-16. |