[1] |
Zhang, W., Belton, B. and Edwards, P. (2022) Aquaculture Will Continue to Depend More on Land than Sea. Nature, 603, E2-E4. https://doi.org/10.1038/s41586-021-04331-3 |
[2] |
Houston, R.D., Bean, T.P., Macqueen, D.J., Gundappa, M.K., Jin, Y.H., Jenkins, T.L., Selly, S.L.C., Martin, S.A.M., Stevens, J.R., Santos, E.M., Davie, A. and Robledo, D. (2020) Harnessing Genomics to Fast-Track Genetic Improvement in Aquaculture. Nature Reviews Genetics, 21, 389-409. https://doi.org/10.1038/s41576-020-0227-y |
[3] |
胡景杰, 任红艳. RAD测序技术及其在水生生物研究中的应用[J]. 水产科学, 2018, 37(1): 125-132. https://doi.org/10.16378/j.cnki.1003-1111.2018.01.020 |
[4] |
Sanger, F., Brownlee, G.G. and Barrell, B.G. (1965) A Two-Dimensional Fractionation Procedure for Radioactive Nucleotides. Journal of Molecular Biology, 13, 373-398. https://doi.org/10.1016/S0022-2836(65)80104-8 |
[5] |
Maxam, A.M. and Gilbert, W. (1977) A New Method for Sequencing DNA. Proceedings of the National Academy of Sciences of the United States of America, 74, 560-564. https://doi.org/10.1073/pnas.74.2.560 |
[6] |
Hendure, J. and Hanlee, L. (2008) Next-Generation DNA Sequencing. Nature Biotechnology, 26, 1135-1145. https://doi.org/10.1038/nbt1486 |
[7] |
Rhoads, A. and Au, K.F. (2015) PacBio Sequencing and Its Applications. Genomics, Proteomics & Bioinformatics, 13, 278-289. https://doi.org/10.1016/j.gpb.2015.08.002 |
[8] |
Peluffo, A.E., Nuez, L., Debate, V., et al. (2015) A Major Locus Controls a Genital Shape Difference Involved in Reproductive Isolation between Drosophila yakuba and Drosophila santomea. G3: Genes Genomes Genetics, 5, 2893-2901. https://doi.org/10.1534/g3.115.023481 |
[9] |
Van Tassell, C.P., Smith, T.P., Matukumallil, K., et al. (2008) SNP Discovery and Allele Frequency Estimation by Deep Sequencing of Reduced Representation Libraries. Nature Methods, 5, 247-252. https://doi.org/10.1038/nmeth.1185 |
[10] |
Van Orsouw, N.J., Hogers, R.C., Janssen, A., et al. (2007) Complexity Reduction of Polymorphic Sequences (CROPS). PLOS ONE, 2, e1172. https://doi.org/10.1371/journal.pone.0001172 |
[11] |
Aird, N.A., Etter, P.D., et al. (2008) Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers. PLOS ONE, 3, e3376. https://doi.org/10.1371/journal.pone.0003376 |
[12] |
Wang, S., Meyer, E., McKay, J.K. and Matz, M.V. (2012) 2b-RAD: A Simple and Flexible Method for Genome-Wide Genotyping. Nature Methods, 9, 808-810. https://doi.org/10.1038/nmeth.2023 |
[13] |
Liu, H.Y., Fu, B.D. and Pang, M.X. (2017) A High-Density Genetic Linkage Map and QTL Fine Mapping for Body Weight in Crucian Carp (Carassius auratus) Using 2b-RAD Sequencing. G3: Genes Genomes Genetics, 7, 2473-2487. https://doi.org/10.1534/g3.117.041376 |
[14] |
Liu, H.Y., Luo, Q., et al. (2020) High-Density Genetic Linkage Map and QTL Fine Mapping of Growth and Sex in Snakehead (Channa argus). Aquaculture, 519, Article ID: 734760. https://doi.org/10.1016/j.aquaculture.2019.734760 |
[15] |
Guo, X.F., Zhou, Y.L., Liu, M., Li, Z., Zhou, L., Wang, Z.W. and Gui, J.F. (2022) A High-Density Genetic Map and QTL Fine Mapping for Growth- and Sex-Related Traits in Red Swamp Crayfish (Procambarus clarkii). Frontiers in Genetics, 13, Article ID: 852280. https://doi.org/10.3389/fgene.2022.852280 |
[16] |
Meng, X., Fu, Q., Luan, S., Luo, K., Sui, J. and Kong, J. (2021) Genome Survey and High-Resolution Genetic Map Provide Valuable Genetic Resources for Fenneropenaeus chinensis. Scientific Reports, 11, Article No. 7533. https://doi.org/10.1038/s41598-021-87237-4 |
[17] |
Jiao, W., Fu, X., Dou, J., et al. (2014) High-Resolution Linkage and Quantitative Trait Locus Mapping Aided by Genome Survey Sequencing: Building up an Integrative Genomic Framework for a Bivalve Mollusc. DNA Research, 21, 85-101. https://doi.org/10.1093/dnares/dst043 |
[18] |
Tian, M., Li, Y., Jing, J., Mu, C., Du, H., Dou, J., Mao, J., Li, X., Jiao, W., Wang, Y., Hu, X., Wang, S., Wang, R. and Bao, Z. (2015) Construction of a High-Density Genetic Map and Quantitative Trait Locus Mapping in the Sea Cucumber Apostichopus japonicus. Scientific Reports, 5, Article No. 14852. https://doi.org/10.1038/srep14852 |
[19] |
Liu, Y., Wang, H.L., Wen, H.S., et al. (2020) First High-Density Linkage Map and QTL Fine Mapping for Growth- Related Traits of Spotted Sea Bass (Lateolabrax maculatus). Marine Biotechnology (New York, N.Y.), 22, 526-538. https://doi.org/10.1007/s10126-020-09973-4 |
[20] |
Pecoraro, C., Babbucci, M., Villamor, A., Franch, R., Papetti, C., Leroy, B., Ortega-Garcia, S., Muir, J., Rooker, J., Arocha, F., Murua, H., Zudaire, I., Chassot, E., Bodin, N., Tinti, F., Bargelloni, L. and Cariani, A. (2016) Methodological Assessment of 2b-RAD Genotyping Technique for Population Structure Inferences in Yellowfin tuna (Thunnus albacares). Marine Genomics, 25, 43-48. https://doi.org/10.1016/j.margen.2015.12.002 |
[21] |
Ji, D., Su, X., Yao, J., Zhang, W., Wang, R. and Zhang, S. (2022) Genetic Diversity and Genetic Differentiation of Populations of Golden-Backed Carp (Cyprinus carpio var. jinbei) in Traditional Rice Fields in Guizhou, China. Animals (Basel), 12, Article No. 1377. https://doi.org/10.3390/ani12111377 |
[22] |
王星火, 常雪晴, 程方平, 马路阔, 徐旭丹, 王有基, 黄伟. 基于2b-RAD简化基因组测序的三门湾海域3种优势鱼类群体遗传多样性分析[J]. 海洋渔业, 2021, 43(5): 513-520. |
[23] |
Vera, M., Maroso, F., Wilmes, S.B., Hermida, M., Blanco, A., Fernández, C., Groves, E., Malham, S.K., Bouza, C., et al. (2022) Genomic Survey of Edible Cockle (Cerastoderma edule) in the Northeast Atlantic: A Baseline for Sustainable Management of Its Wild Resources. Evolutionary Applications, 15, 262-285. https://doi.org/10.1111/eva.13340 |
[24] |
Blanco-Bercial, L. and Bucklin, A. (2016) New View of Population Genetics of Zooplankton: RAD-seq Analysis Reveals Population Structure of the North Atlantic Planktonic Copepod Centropages typicus. Molecular Ecology, 25, 1566-1580. https://doi.org/10.1111/mec.13581 |
[25] |
Galaska, M.P., Sands, C.J., Santos, S.R., Mahon, A.R. and Halanych, K.M. (2017) Crossing the Divide: Admixture across the Antarctic Polar Front Revealed by the Brittle Star Astrotoma agassizii. Biology Bulletin, 232, 198-211. https://doi.org/10.1086/693460 |
[26] |
Galaska, M.P., Sands, C.J., Santos, S.R., Mahon, A.R. and Halanych, K.M. (2017) Geographic Structure in the Southern Ocean Circumpolar Brittle Star Ophionotus victoriae (Ophiuridae) Revealed from mtDNA and Single-Nucleotide Polymorphism Data. Ecology and Evolution, 7, 475-485. https://doi.org/10.1002/ece3.2617 |
[27] |
Dahms, C., Kemppainen, P., Zanella, L.N., Zanella, D., Carosi, A., Merilä, J. and Momigliano, P. (2022) Cast Away in the Adriatic: Low Degree of Parallel Genetic Differentiation in Three-Spined Sticklebacks. Molecular Ecology, 31, 1234-1253. https://doi.org/10.1111/mec.16295 |
[28] |
崔爱君. 黄条鰤种群遗传特性研究[D]: [硕士学位论文]. 上海: 上海海洋大学, 2020. https://doi.org/10.27314/d.cnki.gsscu.2020.000227 |
[29] |
Wei, J.-L., Cong, J.-J. and Sun, Z.-H. (2021) A Rapid and Reliable Method for Genetic Sex Identification in Sea Cucumber, Apostichopus japonicas. Aquaculture, 543, Article ID: 737021. https://doi.org/10.1016/j.aquaculture.2021.737021 |
[30] |
Liu, H., Pang, M. and Yu, X. (2018) Sex-Specific Markers Developed by Next-Generation Sequencing Confirmed an XX/XY Sex Determination System in Bighead Carp (Hypophthalmichthys nobilis) and Silver Carp (Hypophthalmichthys molitrix). DNA Research, 25, 257-264. https://doi.org/10.1093/dnares/dsx054 |
[31] |
Zhu, C., Liu, H. and Cheng, L. (2021) Identification of Sex-Specific Sequences through 2b-RAD Sequencing in Pseudobagrus ussuriensis. Aquaculture, 539, Article ID: 736639. https://doi.org/10.1016/j.aquaculture.2021.736639 |
[32] |
Shi, X., Waiho, K. and Li, X. (2018) Female-Specific SNP Markers Provide Insights into a WZ/ZZ Sex Determination System for Mud Crabs Scylla paramamosain, S. tranquebarica and S. serrata with a Rapid Method for Genetic Sex Identification. BMC Genomics, 19, Article No. 981. https://doi.org/10.1186/s12864-018-5380-8 |
[33] |
Zhou, Y., Wu, J. and Wang, Z. (2019) Identification of Sex-Specific Markers and Heterogametic XX/XY Sex Determination System by 2b‐RAD Sequencing in Redtail Catfish (Mystus wyckioides). Aquaculture Research, 50, 2251- 2266. https://doi.org/10.1111/are.14106 |
[34] |
Han, Y.L., Sun, Z.H. and Chang, S. (2021) Application of SNP in Genetic Sex Identification and Effect of Estradiol on Gene Expression of Sex-Related Genes in Strongylocentrotus intermedius. Frontiers in Endocrinology (Lausanne), 12, Article ID: 756530. https://doi.org/10.3389/fendo.2021.756530 |
[35] |
Huang, X., Jiang, Y., Zhang, W., Cheng, Y., Wang, Y., Ma, X., Duan, Y., Xia, L., Chen, Y., Wu, N., Shi, M. and Xia, X.Q. (2020) Construction of a High-Density Genetic Map and Mapping of Growth Related QTLs in the Grass Carp (Ctenopharyngodon idellus). BMC Genomics, 21, Article No. 313. https://doi.org/10.1186/s12864-020-6730-x |
[36] |
Fu, B., Liu, H., Yu, X. and Tong, J. (2016) A High-Density Genetic Map and Growth Related QTL Mapping in Bighead Carp (Hypophthalmichthys nobilis). Scientific Reports, 6, Article No. 28679. https://doi.org/10.1038/srep28679 |
[37] |
Su, S., Li, H., Du, F., Zhang, C., Li, X., Jing, X., Liu, L., Li, Z., Yang, X., Xu, P., Yuan, X., Zhu, J. and Bouzoualegh, R. (2018) Combined QTL and Genome Scan Analyses with the Help of 2b-RAD Identify Growth-Associated Genetic Markers in a New Fast-Growing Carp Strain. Frontiers in Genetics, 9, Article No. 592. https://doi.org/10.3389/fgene.2018.00592 |
[38] |
Su, S., Raouf, B., He, X., Cai, N., Li, X., Yu, J., Li, J., Yu, F., Wang, M. and Tang, Y. (2020) Genome Wide Analysis for Growth at Two Growth Stages in a New Fast-Growing Common Carp Strain (Cyprinus carpio L.). Scientific Reports, 10, Article No. 7259. https://doi.org/10.1038/s41598-020-64037-w |
[39] |
Liu, H., Fu, B., Pang, M., Feng, X., Yu, X. and Tong, J. (2017) A High-Density Genetic Linkage Map and QTL Fine Mapping for Body Weight in Crucian Carp (Carassius auratus) Using 2b-RAD Sequencing. G3 (Bethesda), 7, 2473-2487. https://doi.org/10.1534/g3.117.041376 |
[40] |
Chen, B., Li, Y., Tian, M., Su, H., Sun, W. and Li, Y. (2022) Linkage Mapping and QTL Analysis of Growth Traits in Rhopilema esculentum. Scientific Reports, 12, Article No. 471. https://doi.org/10.1038/s41598-021-04431-0 |
[41] |
Luqman, A.M., et al. (2020) Genetic Variation, GWAS and Accuracy of Prediction for Host Resistance to Sparicotyle chrysophrii in Farmed Gilthead Sea Bream (Sparus aurata). Frontiers in Genetics, 11, Article ID: 594770. https://doi.org/10.3389/fgene.2020.594770 |
[42] |
Saura, M., Carabaño, M.J., Fernández, A., Cabaleiro, S., Doeschl-Wilson, A.B., Anacleto, O., Maroso, F., Millán, A., Hermida, M., Fernández, C., Martínez, P. and Villanueva, B. (2019) Disentangling Genetic Variation for Resistance and Endurance to Scuticociliatosis in Turbot Using Pedigree and Genomic Information. Frontiers in Genetics, 10, Article No. 539. https://doi.org/10.3389/fgene.2019.00539 |
[43] |
Aslam, M.L., Carraro, R., Bestin, A., et al. (2018) Genetics of Resistance to Photobacteriosis in Gilthead Sea Bream (Sparus aurata) Using 2b-RAD Sequencing. BMC Genetics, 19, Article No. 43. https://doi.org/10.1186/s12863-018-0631-x |