[1] |
霍明真, 李长红. 慢性肾脏病患者FGF23与PTH及血钙、血磷的关系[J]. 齐齐哈尔医学院学报, 2020, 41(2): 145-147. |
[2] |
王善志, 朱永俊, 唐文庄, 等. 中国成人及老年人群慢性肾脏病患病率Meta分析[J]. 中国老年学杂志, 2017, 37(21): 5384-5388. |
[3] |
杨舒贺, 康晓明, 孟庆云, 等. 福辛普利对UUO大鼠肾纤维化组织中Klotho蛋白、Wnt/β-catenin通路及MMP7表达的影响[J]. 黑龙江医药科学, 2019, 42(1): 6-8. |
[4] |
曾庆敏, 李均. Wnt和Notch信号通路在肾纤维化中的作用研究进展[J]. 中国中西医结合肾病杂志, 2019, 20(12): 1124-1126. |
[5] |
Liu, I., Xiao, Q., Xiao, J.N., et al. (2022) Wnt/β-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduction and Targeted Therapy, 7, Article No. 3. https://doi.org/10.1038/s41392-021-00762-6 |
[6] |
Li, S.-S., Sun, Q., Hua, M.-R., et al. (2021) Targeting the Wnt/β-Catenin Signaling Pathway as a Potential Therapeutic Strategy in Renal Tubulointerstitial Fibrosis. Frontiers in Pharmacology, 12, Article ID: 719880. https://doi.org/10.3389/fphar.2021.719880 |
[7] |
肖争. β连环蛋白翻译后修饰与肾间质纤维化[J]. 肾脏病与透析肾移植杂志, 2016, 25(3): 269-273. |
[8] |
Yu, J.E., Kim, S.-O., Hwang, J.-A., et al. (2021) Phosphorylation of β-Catenin Ser60 by Polo-Like Kinase 1 Drives the Completion of Cytokinesis. EMBO Reports, 22, e51503. https://doi.org/10.15252/embr.202051503 |
[9] |
谢莹, 宋泽庆, 王亚红, 等. LRP5蛋白在纤维化疾病中的作用及机制研究进展[J]. 海南医学, 2022, 33(13): 1727-1731. |
[10] |
Colozza, G. and Koo, B. (2021) Wnt β-Catenin Signaling: Structure, Assembly and Endocytosis of the Signalosome. Development, Growth & Differentiation, 63, 199-218. https://doi.org/10.1111/dgd.12718 |
[11] |
Acebron, S.P. and Niehrs, C. (2016) β-Catenin-Independent Roles of Wnt/LRP6 Signaling. Trends in Cell Biology, 26, 956-967. https://doi.org/10.1016/j.tcb.2016.07.009 |
[12] |
Schunk, S.J., Floege, J., Fliser, D., et al. (2021) WNT-β-Catenin Signalling—A Versatile Player in Kidney Injury and Repair. Nature Reviews Nephrology, 11, 172-184. https://doi.org/10.1038/s41581-020-00343-w |
[13] |
Feng, Y.-L., Chen, D.-Q., Vaziri, N.D., et al. (2020) Small Molecule Inhibitors of Epithelial-Mesenchymal Transition for the Treatment of Cancer and Fibrosis. Medicinal Research Reviews, 40, 54-78. https://doi.org/10.1002/med.21596 |
[14] |
Chen, F.T., Chen, L., Li, D., et al. (2022) Relaxin Inhibits Renal Fibrosis and the Epithelial-to-Mesenchymal Transition via the Wnt/β-Catenin Signaling Pathway. Renal Failure, 44, 513-524. https://doi.org/10.1080/0886022X.2022.2044351 |
[15] |
Lee, E.-J., et al. (2020) Dickkopf-3 in Human Malignant Tumours: A Clinical Viewpoint. Anticancer Research, 40, 5969-5979. https://doi.org/10.21873/anticanres.14617 |
[16] |
Gröne, E.F., Federico, G., Nelson, P.J., et al. (2017) The Hormetic Functions of Wnt Pathways in Tubular Injury. Pflügers Archiv, 469, 899-906. https://doi.org/10.1007/s00424-017-2018-7 |
[17] |
Zhou, D., Tan, R.J., Fu, H.Y., et al. (2016) Wnt/β-Catenin Signaling in Kidney Injury and Repair: A Double-Edged Sword. Laboratory Investigation; a Journal of Technical Methods and Pathology, 96, 156-167. https://doi.org/10.1038/labinvest.2015.153 |
[18] |
Federico, G., Meister, M., Mathow, D., et al. (2016) Tubular Dickkopf-3 Promotes the Development of Renal Atrophy and Fibrosis. JCI Insight, 1, e84916. https://doi.org/10.1172/jci.insight.84916 |
[19] |
Schunk, S.J., Speer, T., Petrakis, I., et al. (2021) Dickkopf 3-a Novel Biomarker of the “Kidney Injury Continuum”. Nephrology Dialysis Transplantation, 36, 761-767. https://doi.org/10.1093/ndt/gfaa003 |
[20] |
廖永丽, 李均. 基于Hedgehog信号通路的中药抗肾纤维化研究进展[J]. 医学综述, 2021, 27(16): 3137-3142. |
[21] |
Li, L.Y., Zhou, G., Fu, R., et al. (2021) Polysaccharides Extracted from Balanophora Polyandra Griff (BPP) Ameliorate Renal Fibrosis and EMT via Inhibiting the Hedgehog Pathway. Journal of Cellular and Molecular Medicine, 25, 2828-2840. https://doi.org/10.1111/jcmm.16313 |
[22] |
Effendi, W. and Nagano, T. (2021) The Hedgehog Signaling Pathway in Idiopathic Pulmonary Fibrosis: Resurrection Time. International Journal of Molecular Sciences, 23, Article No. 171. https://doi.org/10.3390/ijms23010171 |
[23] |
李庆. Hedgehog信号通路在肾纤维化中的研究进展[J]. 医学研究生学报, 2019, 32(10): 1089-1093. |
[24] |
Kramann, R., Fleig, S.V., et al. (2015) Pharmacological GLI2 Inhibition Prevents Myofibroblast Cell-Cycle Progression and Reduces Kidney Fibrosis. Journal of Clinical Investigation, 125, 2935-2951. https://doi.org/10.1172/JCI74929 |
[25] |
Smelkinson, M.G. (2017) The Hedgehog Signaling Pathway Emerges as a Pathogenic Target. Journal of Developmental Biology, 5, Article No. 14. https://doi.org/10.3390/jdb5040014 |
[26] |
Zhou, D., Tan, R.J. and Liu Y. (2016) Sonic Hedgehog Signaling in Kidney Fibrosis: A Master Communicator. Science China Life Sciences, 59, 920-929. https://doi.org/10.1007/s11427-016-0020-y |
[27] |
Schunk, S.J., Floege, J., Fliser, D., et al. (2021) WNT-β-Catenin Signalling—A Versatile Player in Kidney Injury and Repair. Nature Reviews. Nephrology, 17, 172-184. https://doi.org/10.1038/s41581-020-00343-w |
[28] |
Longhitano, L., Tibullo, D., Vicario, N., et al. (2021) IGFBP-6/Sonic Hedgehog/TLR4 Signalling Axis Drives Bone Marrow Fibrotic Transformation in Primary Myelofibrosis. Aging, 13, 25055-25071. https://doi.org/10.18632/aging.203779 |
[29] |
Wang, S., et al. (2021) Insulin-Like Growth Factor Binding Proteins in Kidney Disease. Frontiers in Pharmacology, 29, 89-103. https://doi.org/10.3389/fphar.2021.807119 |
[30] |
Wang, S.Q., et al. (2018) The Impact of the Glomerular Filtration Rate on the Human Plasma Proteome. Proteomics—Clinical Applications, 12, Article ID: 1700067. https://doi.org/10.1002/prca.201700067 |
[31] |
Liso, A., Santina, V., Daniela, C.A.R., et al. (2022) IGFBP-6: At the Crossroads of Immunity, Tissue Repair and Fibrosis. International Journal of Molecular Sciences, 23, Article No. 4358. https://doi.org/10.3390/ijms23084358 |
[32] |
王长江, 王岚, 邹新蓉, 等. Klotho基因调节生长激素分泌机制的研究进展[J]. 中国中西医结合肾病杂志, 2022, 23(7): 643-645. |
[33] |
Neyra, J.A., Ming, C.H. and Moe, O.W. (2020) Klotho in Clinical Nephrology: Diagnostic and Therapeutic Implications. Clinical Journal of the American Society of Nephrology, 16, 162-176. https://doi.org/10.2215/CJN.02840320 |
[34] |
陈静, 章晓燕, 丁小强. Klotho蛋白在慢性肾脏病中作用的研究进展[J]. 中国临床医学, 2018, 25(1): 129-131. |
[35] |
刘其锋, 缪静龙. Klotho抑制肾间质纤维化的作用及机制[J]. 医学综述, 2019, 25(20): 3985-3986. |
[36] |
Wu, W.J., et al. (2022) Smad3 Signatures in Renal Inflammation and Fibrosis. International Journal of Biological Sciences, 18, 2795-2806. https://doi.org/10.7150/ijbs.71595 |
[37] |
丁华琳, 李扬扬, 于丰源, 等. 达格列净通过Klotho/TGF-β1通路抑制糖尿病肾病大鼠肾纤维化的作用[J]. 山东大学学报(医学版), 2020, 58(3): 75-80. |
[38] |
曼刘, 春刘, 刚刘. IgA肾病患者肾组织Klotho蛋白与肾纤维化的关系[J]. 吉林医学, 2019, 12(4): 2701-2704. |
[39] |
陈燕玲, 罗婷, 高昕乐, 等. 碘普罗胺对HK-2细胞凋亡及对Klotho/Wnt/β-Catenin信号通路的影响[J]. 实用医学杂志, 2019, 35(5): 729-733. |
[40] |
Wang, Q., Ren, D.J., Li, Y.B., et al. (2019) Klotho Attenuates Diabetic Nephropathy in db/db Mice and Ameliorates High Glucose-Induced Injury of Human Renal Glomerular Endothelial Cells. Cell Cycle, 18, 696-707. https://doi.org/10.1080/15384101.2019.1580495 |
[41] |
拜霖楠, 程虹, 杨敏, 等. α-klotho蛋白拮抗瘦素损伤小鼠足细胞的实验研究[J]. 中国中西医结合肾病杂志, 2016, 17(7): 573-577. |
[42] |
Vogt, I., Dieter, H. and Leifheit-Nestler, M. (2019) FGF23 and Phosphate-Cardiovascular Toxins in CKD. Toxins (Basel), 11, Article No. 647. https://doi.org/10.3390/toxins11110647 |
[43] |
Mace, M.L., Klaus, O. and Lewin, E. (2020) New Aspects of the Kidney in the Regulation of Fibroblast Growth Factor 23 (FGF23) and Mineral Homeostasis. International Journal of Molecular Sciences, 21, Article No. 8810. https://doi.org/10.3390/ijms21228810 |
[44] |
Kawai, M. (2016) The FGF23/Klotho Axis in the Regulation of Mineral and Metabolic Homeostasis. Hormone Molecular Biology and Clinical Investigation, 28, 55-67. https://doi.org/10.1515/hmbci-2015-0068 |
[45] |
Komaba, H. and Lanske, B. (2018) Role of Klotho in Bone and Implica-tion for CKD. Current Opinion in Nephrology and Hypertension, 27, 298-304. https://doi.org/10.1097/MNH.0000000000000423 |
[46] |
Scholze, A., Liu, Y., Pedersen, L., et al. (2014) Soluble α-Klotho and Its Relation to Kidney Function and Fibroblast Growth Factor-23. The Journal of Clinical Endocrinology & Metabolism, 99, E855-E861. https://doi.org/10.1210/jc.2013-4171 |
[47] |
Saha, S., Brigitta, B., Emiliano, P., et al. (2020) An Overview of Nrf2 Sig-naling Pathway and Its Role in Inflammation. Molecules (Basel, Switzerland), 25, Article No. 5474. https://doi.org/10.3390/molecules25225474 |
[48] |
Hernandez, L.F., Eguchi, N., Whaley, D., et al. (2022) Anti-Oxidative Therapy in Diabetic Nephropathy. Frontiers in Bioscience (Scholar Edition), 14, Article No. 14. https://doi.org/10.31083/j.fbs1402014 |
[49] |
Yao, H.K., Zhang, W.T., Yang, F., et al. (2022) Discovery of Caffeoylisocitric Acid as a Keap1-Dependent Nrf2 Activator and Its Effects in Mesangial Cells under High Glucose. Journal of Enzyme Inhibition and Medicinal Chemistry, 37, 178-188. https://doi.org/10.1080/14756366.2021.1998025 |
[50] |
Xing, L.N., Guo, H.J., Meng, S.X., et al. (2021) Klotho Ameliorates Diabetic Nephropathy by Activating Nrf2 Signaling Pathway in Podocytes. Biochemical and Biophysical Research Communications, 534, 450-456. https://doi.org/10.1016/j.bbrc.2020.11.061 |
[51] |
Lim, S.W., Jin, L., Luo, K., et al. (2017) Klotho Enhances FoxO3-Mediated Manganese Superoxide Dismutase Expression by Negatively Regulating PI3K/AKT Pathway during Tacrolimus-Induced Oxidative Stress. Cell Death & Disease, 8, e2972. https://doi.org/10.1038/cddis.2017.365 |
[52] |
Zeldich, E., Chen, C.-D., Colvin, T.A., et al. (2014) The Neuroprotective Effect of Klotho Is Mediated via Regulation of Members of the Redox System. The Journal of Biological Chemistry, 289, 24700-24715. https://doi.org/10.1074/jbc.M114.567321 |
[53] |
Jiang, W., Xiao, T.L., Han, W.H., et al. (2019) Klotho Inhibits PKCα/p66SHC-Mediated Podocyte Injury in Diabetic Nephropathy. Molecular and Cellular Endocrinology, 494, Article ID: 110490. https://doi.org/10.1016/j.mce.2019.110490 |