[1] |
Hoffmann, R.W. (1979) Stereochemistry of [2,3] Sigmatropic Rearrangements. Angewandte Chemie International Edition, 18, 563-572. https://doi.org/10.1002/anie.197905633 |
[2] |
Lansbury, P.T. and Pattison, V.A. (1962) Some Reactions of α-Metalated Ethers. The Journal of Organic Chemistry, 27, 1933-1939. https://doi.org/10.1021/jo01053a001 |
[3] |
Cast, J., Stevens, T.S. and Holmes, J. (1960) Molecular Rearrangement and Fission of Ethers by Alkaline Reagents. Journal of the Chemical Society, 3521-3527. https://doi.org/10.1039/jr9600003521 |
[4] |
Baldwin, J.E., De Bernardis, J. and Patrick, J.E. (1970) Anion Rearrangements: Duality of Mechanism in the Decomposition of Allylic Ether Anions and Synthetic Applications. Tetrahedron Letters, 11, 353-356. https://doi.org/10.1016/0040-4039(70)80082-X |
[5] |
Denmark, S.E. and Cullen, L.R. (2015) Development of a Phase-Transfer-Catalyzed, [2,3]-Wittig Rearrangement. The Joural of Organic Chemistry, 80, 11818-11848. https://doi.org/10.1021/acs.joc.5b01759 |
[6] |
Everett, R.K. and Wolfe, J.P. (2013) Synthesis of Substituted 3-Hydroxy-2-Furanone Derivatives via an Unusual Enolate Wittig Rearrangement/Alkylative Cyclization Sequence. Organic Letter, 15, 2926-2929. https://doi.org/10.1021/ol4009188 |
[7] |
McNally, A., Evans, B. and Gaunt, M.J. (2006) Organocatalytic Sigmatropic Reactions: Development of a [2,3] Wittig Rearrangement through Secondary Amine Catalysis. Angewandte Chemie International Edition, 45, 2116-2119. https://doi.org/10.1002/anie.200504301 |
[8] |
Laconsay, C.J. and Tantillo, D.J. (2021) Metal Bound or Free Ylides as Reaction Intermediates in Metal-Catalyzed [2,3]-Sigmatropic Rearrangements? It Depends. ACS Catalysis, 11, 829-839. https://doi.org/10.1021/acscatal.0c04768 |
[9] |
Still, W.C. and Mitra, A. (1978) A Highly Stereoselective Synthesis of Z-Trisubstituted Olefins via [2,3]-Sigmatropic Rearrangement. Preference for a Pseudoaxially Substituted Transition State. Journal of the American Chemical Society, 100, 1927-1928. https://doi.org/10.1021/ja00474a049 |
[10] |
Jiang, Y.L., Yu, H.X., Li, Y., Qu, P., Han, Y.X., Chen, J.H. and Yang, Z. (2020) Asymmetric Total Synthesis of Pre-Schisanartanin C. Journal of the American Chemical Society, 142, 573-580. https://doi.org/10.1021/jacs.9b11872 |
[11] |
Peng, F. and Danishefsky, S.J. (2012) Total Synthesis of (+/-)-Maoecrystal V. Journal of the American Chemical Society, 134, 18860-18867. https://doi.org/10.1021/ja309905j |
[12] |
Watanabe, K., Iwasaki, K., Abe, T., Inoue, M., Suzuki, T. and Katoh, T. (2005) Enantioselective Total Synthesis of (-)-Candelalide A, a Novel Blocker of the Voltage-Gated Potassium Channel Kv1.3 for an Immunosuppressive Agent. Organic Letter, 7, 3745-3748. https://doi.org/10.1021/ol051398c |
[13] |
Durst, T., Van den Elzen, R. and LeBelle, M.J. (1972) Base-Induced Ring Enlargements of 1-Benzyl- and 1-allyl-2-azetidinones. Journal of the American Chemical Society, 94, 9261-9263. https://doi.org/10.1021/ja00781a065 |
[14] |
Coldham, I., Collis, A.J., Mould, R.J. and Rathmell, R.E. (1995) Ring Expansion of Aziridines to Piperidines Using the Aza-Wittig Rearrangement. Tetrahedron Letters, 36, 3557-3560. https://doi.org/10.1016/0040-4039(95)00557-S |
[15] |
Anderson, J.C., Siddons, D.C., Smith, S.C. and Swarbrick, M.E. (1995) Aza-[2,3]-Wittig Sigmatropic Rearrangement of Crotyl Amines. Journal of the Chemical Society, Chemical Communications, 1835-1836. https://doi.org/10.1039/c39950001835 |
[16] |
Anderson, J.C. and Davies, E.A. (2010) Diastereoselective Synthesis of Substituted Prolines via 5-Endo-Trig Cyclisations of Aza-[2,3]-Wittig Sigmatropic Rearrangement Products. Tetrahedron, 66, 6300-6308. https://doi.org/10.1016/j.tet.2010.04.095 |
[17] |
Gawley, R.E. and Moon, K. (2007) Stereoselective [2,3]-Sigmatropic Rearrangements of Unstabilized Nitrogen Ylides. Organic Letter, 9, 3093-3096. https://doi.org/10.1021/ol071188v |
[18] |
West, T.H., Daniels, D.S., Slawin, A.M. and Smith, A.D. (2014) An Isothiourea-Catalyzed Asymmetric [2,3]-Rearrangement of Allylic Ammonium Ylides. Journal of the American Chemical Society, 136, 4476-4479. https://doi.org/10.1021/ja500758n |
[19] |
Soheili, A. and Tambar, U.K. (2011) Tandem Catalytic Allylic Amination and [2,3]-Stevens Rearrangement of Tertiary Amines. Journal of the American Chemical Society, 133, 12956-12959. https://doi.org/10.1021/ja204717b |
[20] |
Mikami, K., Kimura, Y., Kishi, N. and Nakai, T. (1983) Acyclic Diastereoselection of the [2,3]-Wittig Sigmatropic Rearrangement of a Series of Isomeric Crotyl Ethers. A Conceptual Model for the Transition-State Geometry. The Journal of Organic Chemistry, 48, 279-281. https://doi.org/10.1021/jo00150a033 |
[21] |
Workman, J.A., Garrido, N.P., Sancon, J., Roberts, E., Wessel, H.P. and Sweeney, J.B. (2005) Asymmetric [2,3]- Rearrangement of Glycine-Derived Allyl Ammonium Ylids. Journal of the American Chemical Society, 127, 1066-1067. https://doi.org/10.1021/ja043768i |
[22] |
Rodriguez, R.I., Ramirez, E., Fernandez-Salas, J.A., Sanchez-Obregon, R., Yuste, F. and Aleman, J. (2018) Asymmetric [2,3]-Wittig Rearrangement: Synthesis of Homoallylic, Allenylic, and Enynyl Alpha-Benzyl Alcohols. Organic Letter, 20, 8047-8051. https://doi.org/10.1021/acs.orglett.8b03659 |
[23] |
Blackburn, T.J., Kilner, M.J. and Thomas, E.J. (2015) Synthetic Approaches to Phomactins: On the Stereoselectivity of Some [2,3]-Wittig Rearrangements. Tetrahedron, 71, 7293-7309. https://doi.org/10.1016/j.tet.2015.04.005 |
[24] |
Kawasaki, T. and Kimachi, T. (1999) Sparteine-Mediated Enantioselective [2,3]-Wittig Rearrangement of Allyl Ortho-Substituted Benzyl Ethers and Ortho-Substituted Benzyl Prenyl Ethers. Tetrahedron, 55, 6847-6862. https://doi.org/10.1016/S0040-4020(99)00338-5 |
[25] |
Kennedy, C.R., Guidera, J.A. and Jacobsen, E.N. (2016) Synergistic Ion-Binding Catalysis Demonstrated via an Enantioselective, Catalytic [2,3]-Wittig Rearrangement. ACS Central Science, 2, 416-423. https://doi.org/10.1021/acscentsci.6b00125 |
[26] |
Xu, X., Zhang, J., Dong, S., Lin, L., Lin, X., Liu, X. and Feng, X. (2018) Nickel(II)-Catalyzed Asymmetric Propargyl [2,3] Wittig Rearrangement of Oxindole Derivatives: A Chiral Amplification Effect. Angewandte Chemie International Edition, 57, 8734-8738. https://doi.org/10.1002/anie.201804080 |