[1] |
Radici, P., Valadez Huerta, G., Geesmann, N. and Kabelac, S. (2021) A Novel Method to Determine the Transport Coef-ficients of an YSZ Electrolyte Based on Impedance Spectroscopy. Solid State Ionics, 363, Article ID: 115591. https://doi.org/10.1016/j.ssi.2021.115591 |
[2] |
Gao, B., Liu, Z., Ji, S. and Ao, Q.B. (2022) Fabrication of a YSZ Electrolyte Layer via Co-Pressing/Co-Sintering for Tubular NiO-YSZ Anode-Supported SOFCs. Materials Letters, 323, Article ID: 132547. https://doi.org/10.1016/j.matlet.2022.132547 |
[3] |
Balci, M., Al-Jaafer, H. and Ari, M. (2022) Structural, Thermal and Electrical Analysis of Tb-Gd-Sm Co-Doped Bi2O3-Based Solid Solutions for Intermediate-Temperature Solid Oxide Fuel Cells (IT-SOFCs). Chemical Physics Letters, 809, Article ID: 140149. https://doi.org/10.1016/j.cplett.2022.140149 |
[4] |
Balci, M., Cengel, A. and Ari, M. (2022) The Microstructure and Thermo-Electrical Characterization of the Tb-Gd-Ho Co-Doped Stabilized Bi2O3 Based Solid Electrolyte Systems. Chi-nese Journal of Physics, 79, 89-97. https://doi.org/10.1016/j.cjph.2022.08.005 |
[5] |
Zhang, J., Liang, E.J. and Zhang, X.H. (2010) Rapid Synthesis of La0.9Sr0.1Ga0.8Mg0.2O3-δ Electrolyte by a CO2 Laser and Its Electric Properties for Intermediate Temperature Solid State Oxide Full Cells. Journal of Power Sources, 195, 6758-6763. https://doi.org/10.1016/j.jpowsour.2010.03.092 |
[6] |
Zhang, J., Yuan, C., Wang, J.Q., et al. (2013) Oxygen Ion Conductivity of La0.8Sr0.2Ga0.83Mg0.17−xCoxO3−δ Synthesized by Laser Rapid Solidification. Chinese Physics B, 22, Arti-cle ID: 087201. https://doi.org/10.1088/1674-1056/22/8/087201 |
[7] |
Dong, X., Tian, L., Li, J., Zhao, Y., Tian, Y. and Li, Y. (2014) Single Layer Fuel Cell Based on a Composite of Ce0.8Sm0.2O2-δ-Na2CO3 and a Mixed Ionic and Electronic Conductor Sr2Fe1.5Mo0.5O6-δ. Journal of Power Sources, 249, 270-276. https://doi.org/10.1016/j.jpowsour.2013.10.045 |
[8] |
Deng, H., Zhang, W., Wang, X., et al. (2017) An Ionic Con-ductor Ce0.8Sm0.2O2-δ (SDC) and Semiconductor Sm0.5Sr0.5CoO3 (SSC) Composite for High Performance Electro-lyte-Free Fuel Cell. International Journal of Hydrogen Energy, 42, 22228- 22234. https://doi.org/10.1016/j.ijhydene.2017.03.089 |
[9] |
Yousaf, M., Mushtaq, N., Zhu, B., et al. (2020) Electrochemi-cal Properties of Ni0.4Zn0.6Fe2O4 and the Heterostructure Composites (Ni-Zn ferrite-SDC) for Low Temperature Solid Oxide Fuel Cell (LT-SOFC). Electrochimical Acta, 331, Article ID: 135349. https://doi.org/10.1016/j.electacta.2019.135349 |
[10] |
Mushtaq, N., Xia, C., Dong, W., et al. (2019) Tuning the En-ergy Band Structure at Interfaces of the SrFe0.75Ti0.25O3-δ- Sm0.25Ce0.75O2-δ Heterostructure for Fast Ionic Transport. ACS Applied Materials & Interfaces, 11, 38737-38745. https://doi.org/10.1021/acsami.9b13044 |
[11] |
Wang, B., Wang, Y., Fan, L., et al. (2016) Preparation and Character-ization of Sm and Ca Co-Doped Ceria- La0.6Sr0.4Co0.2Fe0.8O3-δ Semiconductor-Ionic Composites for Electro-lyte-Layer-Free Fuel Cells. Journal of Materials Chemistry A, 4, 15426-15436. https://doi.org/10.1039/C6TA05763B |
[12] |
张炜. 氧化铈基电解质在单部件燃料电池中的应用[D]: [硕士学位论文]. 武汉: 湖北大学, 2017. |
[13] |
Zhu, B., Lund, P., Raza, R., et al. (2013) A New Energy Conversion Technology Based on Nano-Redox and Nano- Device Processes. Nano Energy, 2, 1179-1185. https://doi.org/10.1016/j.nanoen.2013.05.001 |
[14] |
Scharber, M.C., Hlbacher, M.D., Koppe, M., et al. (2006) De-sign Rules for Donors in Bulk-Heterojunction Solar Cells- Towards 10 % Energy-Conversion Efficiency. Advanced Ma-terials, 18, 789-794. https://doi.org/10.1002/adma.200501717 |
[15] |
Zhu, B., Raza, R., Qin, H. and Fan, L.D. (2011) Single-Component and Three-Component Fuel Cells. Journal of Power Sources, 196, 6362-6365. https://doi.org/10.1016/j.jpowsour.2011.03.078 |
[16] |
Zhu, B., Raza, R., Abbas, G. and Singh, M. (2011) An Elec-trolyte-Free Fuel Cell Constructed from One Homogenous Layer with Mixed Conductivity. Advanced Functional Mate-rials, 21, 2465-2469. https://doi.org/10.1002/adfm.201002471 |
[17] |
Zhu, B., Raza, R., Liu, Q., Qin, H., Zhu, Z., Fan, L., Singh, M. and Lund, P. (2012) A New Energy Conversion Technology Joining Electrochemical and Physical Principles. RSC Advances, 2, 5066-5072. https://doi.org/10.1039/c2ra01234k |
[18] |
Lu, Y.Z., Li, J.J., Ma, L.G., et al. (2021) The Development of Semicon-ductor-Ionic Conductor Composite Electrolytes for Fuel Cells with Symmetrical Electrodes. International Journal of Hy-drogen Energy, 46, 9835-9846. https://doi.org/10.1016/j.ijhydene.2020.05.240 |
[19] |
Gong, X., Tong, M., Brunetti, F.G., et al. (2011) Bulk Hetero-junction Solar Cells with Large Open-Circuit Voltage: Electron Transfer with Small Donor-Acceptor Energy Offset. Ad-vanced Materials, 23, 2272-2277. https://doi.org/10.1002/adma.201003768 |
[20] |
童雨竹. 二氧化钛电解质在固体氧化物燃料电池中的应用[D]: [硕士学位论文]. 武汉: 湖北大学, 2019. |
[21] |
邵康. 混合半导体-离子型燃料电池新材料开发与电化学性能研究[D]: [硕士学位论文]. 深圳: 深圳大学, 2020. |
[22] |
刘开. 氧化锡基半导体-离子导体在SOFC中的研究与应用[D]: [硕士学位论文]. 武汉: 湖北大学, 2021. |
[23] |
宓有全. 基于新型功能半导体离子材料的低温固体氧化物燃料电池[D]: [硕士学位论文]. 武汉: 湖北大学, 2019. |
[24] |
Sajid Rauf. 设计面向低温固体氧化物燃料电池的高离子电导型半导体和异质结构电解质[D]: [硕士学位论文]. 武汉: 湖北大学, 2021. |
[25] |
孟元靖. 钐掺杂氧化铈与钙钛矿复合电解质在低温固体氧化物燃料电池中的应用研究[D]: [博士学位论文]. 长春: 吉林大学, 2020. |
[26] |
Dong, W., Tong, Y., Zhu, B., et al. (2019) Semiconductor TiO2 Thin Film as an Electrolyte for Fuel Cells. Journal of Materials Chemistry A, 7, 16728-16734. https://doi.org/10.1039/C9TA01941C |
[27] |
Zhu, B., Wang, B., Wang, Y., et al. (2017) Charge Separation and Transport in La0.6Sr0.4Co0.2Fe0.8O3-δ and Ion-Doping Ceria Heterostructure Material for New Generation Fuel Cell. Nano Energy, 37, 195-202. https://doi.org/10.1016/j.nanoen.2017.05.003 |
[28] |
Chen, G., Liu, H., He, Y., et al. (2019) Electrochemical Mecha-nisms of an Advanced Low-Temperature Fuel Cell with a SrTiO3 Electrolyte. Journal of Materials Chemistry A, 7, 9638-9645. https://doi.org/10.1039/C9TA00499H |
[29] |
Zhu, B., Qin, H., Raza, R., et al. (2011) A Sin-gle-Component Fuel Cell Reactor. International Journal of Hydrogen Energy, 36, 536-8541. https://doi.org/10.1016/j.ijhydene.2011.04.082 |
[30] |
Asghar, M.I., Jouttijärvi, S., Jokiranta, R., et al. (2018) Wide Bandgap Oxides for Low-Temperature Single-Layered Nanocomposite Fuel Cell. Nano Energy, 53, 391-397. https://doi.org/10.1016/j.nanoen.2018.08.070 |
[31] |
董婷. 半导体离子型燃料电池的性能研究[D]: [硕士学位论文]. 南京: 东南大学, 2020. |
[32] |
Xia, Y., Liu, X., Bai, Y., et al. (2012) Electrical Conductivity Optimization in Elec-trolyte-Free Fuel Cells by Single- Component Ce0.8Sm0.2O2-d-Li0.15Ni0.45Zn0.4 Layer. RSC Advances, 2, 3828-3834. https://doi.org/10.1039/c2ra01213h |
[33] |
周晓蜜. 具有离子-半导体复合膜的无电解质层燃料电池的制备及性能[D]: [硕士学位论文]. 包头: 内蒙古科技大学, 2019. |
[34] |
王广军. 新型低温固体氧化物燃料电池复合材料制备与器件设计[D]: [硕士学位论文]. 长春: 吉林大学, 2016. |
[35] |
乔峥. 氧化锌基固态电解质在燃料电池中的应用及电导特性研究[D]: [博士学位论文]. 武汉: 湖北大学, 2021. |
[36] |
邢月明. CeO2基半导体异质结材料的离子传输特性研究[D]: [博士学位论文]. 武汉: 中国地质大学, 2022. |
[37] |
高洁. 固体氧化物燃料电池半导体-离子导体复合电解质研究[D]: [硕士学位论文]. 武汉: 湖北大学, 2021. |
[38] |
Xia, C., Qiao, Z., Feng, C., et al. (2018) Study on Zinc Oxide-Based Electrolytes in Low-Temperature Solid Oxide Fuel Cells. Materials, 11, Article 40. https://doi.org/10.3390/ma11010040 |
[39] |
Liu, L., Liu, Y.Y., Li, L.Y., et al. (2018) The Composite Electrolyte with an Insulation Sm2O3 and Semiconductor NiO for Advanced Fuel Cells. International Journal of Hydrogen Energy, 43, 12739-12747. https://doi.org/10.1016/j.ijhydene.2018.03.184 |
[40] |
Meng, Y., Wang, X., Zhang, W., et al. (2019) Novel High Ionic Conductivity Electrolyte Membrane Based on Semiconductor La0.65Sr0.3Ce0.05Cr0.5Fe0.5O3-δ for Low-Temperature Solid Oxide Fuel Cells. Journal of Power Sources, 421, 33-40. https://doi.org/10.1016/j.jpowsour.2019.02.100 |
[41] |
Wu, Y., Xia, C., Zhang, W., et al. (2016) Natural Hematite for Next-Generation Solid Oxide Fuel Cells. Advanced Functional Materials, 26, 938-942. https://doi.org/10.1002/adfm.201503756 |
[42] |
Xia, C., Mi, Y., Wang, B., et al. (2019) Shaping Triple-Conducting Semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an Electrolyte for Low-Temperature Solid Oxide Fuel Cells. Nature Com-munications, 10, Article No. 1707. https://doi.org/10.1038/s41467-019-09532-z |
[43] |
孙子元, 邹晗, 赵建永, 等. 半导体异质结燃料电池发电性能研究[J]. 电源技术, 2022, 46(1): 29-32. |
[44] |
Wu, Y., Dong, B., Zhang, J., Song, H. and Yan, C. (2018) The Syn-thesis of ZnO/SrTiO3 Composite for High-Efficiency Photocatalytic Hydrogen and Electricity Conversion. International Journal of Hydrogen Energy, 43, 12627-12636. https://doi.org/10.1016/j.ijhydene.2018.03.206 |
[45] |
Shah, M.A.K.Y., Mushtaq, N., Rauf, S., et al. (2019) The Semiconductor SrFe0.2Ti0.8O3-δ-ZnO Heterostructure Electrolyte Fuel Cells. International Journal of Hydrogen Energy, 44, 30319-30327. https://doi.org/10.1016/j.ijhydene.2019.09.145 |
[46] |
Shah, M.A.K.Y., Tayyab, Z., Rauf, S., et al. (2021) Interface Engineering of Bi-Layer Semiconductor SrCoSnO3-δ- CeO2-δ Heterojunction Electrolyte for Boosting the Electrochemical Performance of Low-Temperature Ceramic Fuel Cell. International Journal of Hydrogen Energy, 46, 33969-33977. https://doi.org/10.1016/j.ijhydene.2021.07.204 |
[47] |
Hu, M.S., Chen, M., Wang, Y.C., et al. (2023) A p-n Hetero-structure Composite of NaCrO2and CeO2 for Intermediate Temperature Solid Oxide Fuel Cells. Journal of Alloys and Compounds, 962, Article ID: 171169. https://doi.org/10.1016/j.jallcom.2023.171169 |
[48] |
Rauf, S., Hanif, M.B., Wali, F., et al. (2023) Highly Active In-terfacial Sites in SFT-SnO2 Hetero Junction Electrolyte for Enhanced Fuel Cell Performance via Engineered Energy Bands: Envisioned Theoretically and Experimentally. Energy & Environmental Materials, 6, e12606. https://doi.org/10.1002/eem2.12606 |
[49] |
Shah, M.A.K.Y., Lu, Y. and Mushtaq, N. (2022) Interfacial Active-Sites p-n Heterojunction SFT-WO3 for Enhanced Fuel Cell Performance at 400-500℃. Materials Today Sustainability, 20, Article ID: 100229. https://doi.org/10.1016/j.mtsust.2022.100229 |